Run
10560826

Run 10560826

Task 50 (Supervised Classification) heart-h Uploaded 20-10-2021 by Victor Bouvier
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(preprocessor=sklearn.compose._column_transformer. ColumnTransformer(num=sklearn.pipeline.Pipeline(imputer=sklearn.impute._bas e.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),cat=skle arn.preprocessing._encoders.OneHotEncoder),estimator=sklearn.tree._classes. DecisionTreeClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.impute._base.SimpleImputer(25)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(25)_copytrue
sklearn.impute._base.SimpleImputer(25)_fill_valuenull
sklearn.impute._base.SimpleImputer(25)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(25)_strategy"median"
sklearn.impute._base.SimpleImputer(25)_verbose0
sklearn.tree._classes.DecisionTreeClassifier(20)_ccp_alpha0.0
sklearn.tree._classes.DecisionTreeClassifier(20)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(20)_criterion"gini"
sklearn.tree._classes.DecisionTreeClassifier(20)_max_depthnull
sklearn.tree._classes.DecisionTreeClassifier(20)_max_featuresnull
sklearn.tree._classes.DecisionTreeClassifier(20)_max_leaf_nodesnull
sklearn.tree._classes.DecisionTreeClassifier(20)_min_impurity_decrease0.0
sklearn.tree._classes.DecisionTreeClassifier(20)_min_impurity_splitnull
sklearn.tree._classes.DecisionTreeClassifier(20)_min_samples_leaf1
sklearn.tree._classes.DecisionTreeClassifier(20)_min_samples_split2
sklearn.tree._classes.DecisionTreeClassifier(20)_min_weight_fraction_leaf0.0
sklearn.tree._classes.DecisionTreeClassifier(20)_random_state21955
sklearn.tree._classes.DecisionTreeClassifier(20)_splitter"best"
sklearn.preprocessing._encoders.OneHotEncoder(29)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(29)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(29)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(29)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(29)_sparsetrue
sklearn.preprocessing._data.StandardScaler(9)_copytrue
sklearn.preprocessing._data.StandardScaler(9)_with_meantrue
sklearn.preprocessing._data.StandardScaler(9)_with_stdtrue
sklearn.pipeline.Pipeline(preprocessor=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),cat=sklearn.preprocessing._encoders.OneHotEncoder),estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(preprocessor=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),cat=sklearn.preprocessing._encoders.OneHotEncoder),estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "preprocessor", "step_name": "preprocessor"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(preprocessor=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),cat=sklearn.preprocessing._encoders.OneHotEncoder),estimator=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),cat=sklearn.preprocessing._encoders.OneHotEncoder)(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),cat=sklearn.preprocessing._encoders.OneHotEncoder)(1)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),cat=sklearn.preprocessing._encoders.OneHotEncoder)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),cat=sklearn.preprocessing._encoders.OneHotEncoder)(1)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),cat=sklearn.preprocessing._encoders.OneHotEncoder)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "num", "step_name": "num", "argument_1": ["age", "trestbps", "chol", "thalach", "oldpeak", "ca"]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "cat", "step_name": "cat", "argument_1": ["sex", "chest_pain", "fbs", "restecg", "exang", "slope", "thal"]}}]
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler),cat=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(1)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "scaler", "step_name": "scaler"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,scaler=sklearn.preprocessing._data.StandardScaler)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

17 Evaluation measures

0.7338 ± 0.0831
Per class
Cross-validation details (10-fold Crossvalidation)
0.7524 ± 0.0716
Per class
Cross-validation details (10-fold Crossvalidation)
0.4648 ± 0.1576
Cross-validation details (10-fold Crossvalidation)
0.4523 ± 0.1572
Cross-validation details (10-fold Crossvalidation)
0.0993 ± 0.0284
Cross-validation details (10-fold Crossvalidation)
0.1867 ± 0.0016
Cross-validation details (10-fold Crossvalidation)
0.7517 ± 0.071
Cross-validation details (10-fold Crossvalidation)
294
Per class
Cross-validation details (10-fold Crossvalidation)
0.7533 ± 0.0753
Per class
Cross-validation details (10-fold Crossvalidation)
0.7517 ± 0.071
Cross-validation details (10-fold Crossvalidation)
0.9577 ± 0.0117
Cross-validation details (10-fold Crossvalidation)
0.532 ± 0.1524
Cross-validation details (10-fold Crossvalidation)
0.3037 ± 0.0026
Cross-validation details (10-fold Crossvalidation)
0.3152 ± 0.0488
Cross-validation details (10-fold Crossvalidation)
1.0377 ± 0.1618
Cross-validation details (10-fold Crossvalidation)