Run
10560806

Run 10560806

Task 31 (Supervised Classification) credit-g Uploaded 12-09-2021 by Victorien Fandos
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(ColumnTansformer=sklearn.compose._column_transfor mer.ColumnTransformer(OneHotEncoder=sklearn.preprocessing._encoders.OneHotE ncoder),MaxAbsScaler=sklearn.preprocessing._data.MaxAbsScaler,svc=sklearn.s vm._classes.SVC)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.preprocessing._encoders.OneHotEncoder(29)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(29)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(29)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(29)_handle_unknown"error"
sklearn.preprocessing._encoders.OneHotEncoder(29)_sparsetrue
sklearn.svm._classes.SVC(9)_C7.5
sklearn.svm._classes.SVC(9)_break_tiesfalse
sklearn.svm._classes.SVC(9)_cache_size200
sklearn.svm._classes.SVC(9)_class_weightnull
sklearn.svm._classes.SVC(9)_coef00.0
sklearn.svm._classes.SVC(9)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(9)_degree3
sklearn.svm._classes.SVC(9)_gamma0.04
sklearn.svm._classes.SVC(9)_kernel"poly"
sklearn.svm._classes.SVC(9)_max_iter-1
sklearn.svm._classes.SVC(9)_probabilityfalse
sklearn.svm._classes.SVC(9)_random_state63944
sklearn.svm._classes.SVC(9)_shrinkingtrue
sklearn.svm._classes.SVC(9)_tol0.001
sklearn.svm._classes.SVC(9)_verbosefalse
sklearn.pipeline.Pipeline(ColumnTansformer=sklearn.compose._column_transformer.ColumnTransformer(OneHotEncoder=sklearn.preprocessing._encoders.OneHotEncoder),MaxAbsScaler=sklearn.preprocessing._data.MaxAbsScaler,svc=sklearn.svm._classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(ColumnTansformer=sklearn.compose._column_transformer.ColumnTransformer(OneHotEncoder=sklearn.preprocessing._encoders.OneHotEncoder),MaxAbsScaler=sklearn.preprocessing._data.MaxAbsScaler,svc=sklearn.svm._classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "ColumnTansformer", "step_name": "ColumnTansformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "MaxAbsScaler", "step_name": "MaxAbsScaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(ColumnTansformer=sklearn.compose._column_transformer.ColumnTransformer(OneHotEncoder=sklearn.preprocessing._encoders.OneHotEncoder),MaxAbsScaler=sklearn.preprocessing._data.MaxAbsScaler,svc=sklearn.svm._classes.SVC)(1)_verbosefalse
sklearn.compose._column_transformer.ColumnTransformer(OneHotEncoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(OneHotEncoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(OneHotEncoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(OneHotEncoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(OneHotEncoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "OneHotEncoder", "step_name": "OneHotEncoder", "argument_1": ["foreign_worker", "own_telephone", "job", "housing", "other_payment_plans", "property_magnitude", "other_parties", "personal_status", "employment", "savings_status", "purpose", "credit_history", "checking_status"]}}]
sklearn.compose._column_transformer.ColumnTransformer(OneHotEncoder=sklearn.preprocessing._encoders.OneHotEncoder)(1)_verbosefalse
sklearn.preprocessing._data.MaxAbsScaler(2)_copytrue

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.68 ± 0.0378
Per class
Cross-validation details (10-fold Crossvalidation)
0.7541 ± 0.0289
Per class
Cross-validation details (10-fold Crossvalidation)
0.3946 ± 0.0742
Cross-validation details (10-fold Crossvalidation)
0.4076 ± 0.0611
Cross-validation details (10-fold Crossvalidation)
0.232 ± 0.0239
Cross-validation details (10-fold Crossvalidation)
0.4202
Cross-validation details (10-fold Crossvalidation)
0.768 ± 0.0239
Cross-validation details (10-fold Crossvalidation)
1000
Per class
Cross-validation details (10-fold Crossvalidation)
0.7559 ± 0.0301
Per class
Cross-validation details (10-fold Crossvalidation)
0.768 ± 0.0239
Cross-validation details (10-fold Crossvalidation)
0.8813
Cross-validation details (10-fold Crossvalidation)
0.5522 ± 0.057
Cross-validation details (10-fold Crossvalidation)
0.4583
Cross-validation details (10-fold Crossvalidation)
0.4817 ± 0.0245
Cross-validation details (10-fold Crossvalidation)
1.0511 ± 0.0534
Cross-validation details (10-fold Crossvalidation)
0.68 ± 0.0378
Cross-validation details (10-fold Crossvalidation)