Run
10560798

Run 10560798

Task 9980 (Supervised Classification) climate-model-simulation-crashes Uploaded 03-09-2021 by Victorien Fandos
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(MinMaxScaler=sklearn.preprocessing._data.MinMaxSc aler,svc=sklearn.svm._classes.SVC)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.svm._classes.SVC(9)_C2
sklearn.svm._classes.SVC(9)_break_tiesfalse
sklearn.svm._classes.SVC(9)_cache_size200
sklearn.svm._classes.SVC(9)_class_weightnull
sklearn.svm._classes.SVC(9)_coef00.0
sklearn.svm._classes.SVC(9)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(9)_degree3
sklearn.svm._classes.SVC(9)_gamma0.2222223
sklearn.svm._classes.SVC(9)_kernel"poly"
sklearn.svm._classes.SVC(9)_max_iter-1
sklearn.svm._classes.SVC(9)_probabilityfalse
sklearn.svm._classes.SVC(9)_random_state14563
sklearn.svm._classes.SVC(9)_shrinkingtrue
sklearn.svm._classes.SVC(9)_tol0.001
sklearn.svm._classes.SVC(9)_verbosefalse
sklearn.pipeline.Pipeline(MinMaxScaler=sklearn.preprocessing._data.MinMaxScaler,svc=sklearn.svm._classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(MinMaxScaler=sklearn.preprocessing._data.MinMaxScaler,svc=sklearn.svm._classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "MinMaxScaler", "step_name": "MinMaxScaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}]
sklearn.pipeline.Pipeline(MinMaxScaler=sklearn.preprocessing._data.MinMaxScaler,svc=sklearn.svm._classes.SVC)(1)_verbosefalse
sklearn.preprocessing._data.MinMaxScaler(3)_clipfalse
sklearn.preprocessing._data.MinMaxScaler(3)_copytrue
sklearn.preprocessing._data.MinMaxScaler(3)_feature_range[0, 1]

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5768 ± 0.0681
Per class
Cross-validation details (10-fold Crossvalidation)
0.8929 ± 0.029
Per class
Cross-validation details (10-fold Crossvalidation)
0.2123 ± 0.1891
Cross-validation details (10-fold Crossvalidation)
0.2261 ± 0.2086
Cross-validation details (10-fold Crossvalidation)
0.0889 ± 0.0244
Cross-validation details (10-fold Crossvalidation)
0.1571 ± 0.0079
Cross-validation details (10-fold Crossvalidation)
0.9111 ± 0.0244
Cross-validation details (10-fold Crossvalidation)
540
Per class
Cross-validation details (10-fold Crossvalidation)
0.8861 ± 0.0434
Per class
Cross-validation details (10-fold Crossvalidation)
0.9111 ± 0.0244
Cross-validation details (10-fold Crossvalidation)
0.4202 ± 0.0325
Cross-validation details (10-fold Crossvalidation)
0.5657 ± 0.1517
Cross-validation details (10-fold Crossvalidation)
0.2792 ± 0.0143
Cross-validation details (10-fold Crossvalidation)
0.2981 ± 0.0415
Cross-validation details (10-fold Crossvalidation)
1.068 ± 0.1484
Cross-validation details (10-fold Crossvalidation)
0.5768 ± 0.0681
Cross-validation details (10-fold Crossvalidation)