Run
10560692

Run 10560692

Task 3913 (Supervised Classification) kc2 Uploaded 21-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=s klearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imp uter,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=skle arn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotenco der=sklearn.preprocessing._encoders.OneHotEncoder)),mlpclassifier=sklearn.n eural_network.multilayer_perceptron.MLPClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.preprocessing.imputation.Imputer(56)_axis0
sklearn.preprocessing.imputation.Imputer(56)_copytrue
sklearn.preprocessing.imputation.Imputer(56)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(56)_strategy"mean"
sklearn.preprocessing.imputation.Imputer(56)_verbose0
sklearn.preprocessing.data.StandardScaler(44)_copytrue
sklearn.preprocessing.data.StandardScaler(44)_with_meantrue
sklearn.preprocessing.data.StandardScaler(44)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(7)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(7)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
sklearn.impute.SimpleImputer(19)_copytrue
sklearn.impute.SimpleImputer(19)_fill_value-1
sklearn.impute.SimpleImputer(19)_missing_valuesNaN
sklearn.impute.SimpleImputer(19)_strategy"constant"
sklearn.impute.SimpleImputer(19)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(28)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(28)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(28)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(28)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(28)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(28)_sparsetrue
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": []}}]
sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(3)_memorynull
sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(3)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "missingindicator", "step_name": "missingindicator"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
sklearn.impute.MissingIndicator(4)_error_on_newfalse
sklearn.impute.MissingIndicator(4)_features"missing-only"
sklearn.impute.MissingIndicator(4)_missing_valuesNaN
sklearn.impute.MissingIndicator(4)_sparse"auto"
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),mlpclassifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier)(2)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),mlpclassifier=sklearn.neural_network.multilayer_perceptron.MLPClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "mlpclassifier", "step_name": "mlpclassifier"}}]
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_activation"logistic"
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_alpha0.0003722381002384102
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_batch_size"auto"
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_beta_10.9
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_beta_20.999
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_early_stoppingfalse
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_epsilon1e-08
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_hidden_layer_sizes128
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_learning_rate"invscaling"
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_learning_rate_init0.001
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_max_iter847
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_momentum0.9
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_n_iter_no_change10
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_nesterovs_momentumtrue
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_power_t0.5
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_random_state47053
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_shuffletrue
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_solver"lbfgs"
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_tol0.00035607911549709217
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_validation_fraction0.1
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_verbosefalse
sklearn.neural_network.multilayer_perceptron.MLPClassifier(20)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6252 ± 0.1154
Per class
Cross-validation details (10-fold Crossvalidation)
0.7876 ± 0.0808
Per class
Cross-validation details (10-fold Crossvalidation)
0.3328 ± 0.2421
Cross-validation details (10-fold Crossvalidation)
0.2111 ± 0.2658
Cross-validation details (10-fold Crossvalidation)
0.2255 ± 0.0745
Cross-validation details (10-fold Crossvalidation)
0.3266 ± 0.0052
Cross-validation details (10-fold Crossvalidation)
0.7931 ± 0.0827
Cross-validation details (10-fold Crossvalidation)
522
Per class
Cross-validation details (10-fold Crossvalidation)
0.7834 ± 0.0854
Per class
Cross-validation details (10-fold Crossvalidation)
0.7931 ± 0.0827
Cross-validation details (10-fold Crossvalidation)
0.7318 ± 0.0173
Cross-validation details (10-fold Crossvalidation)
0.6904 ± 0.225
Cross-validation details (10-fold Crossvalidation)
0.4037 ± 0.0065
Cross-validation details (10-fold Crossvalidation)
0.4475 ± 0.0932
Cross-validation details (10-fold Crossvalidation)
1.1085 ± 0.2261
Cross-validation details (10-fold Crossvalidation)
0.6583 ± 0.1129
Cross-validation details (10-fold Crossvalidation)