Run
10560609

Run 10560609

Task 146583 (Supervised Classification) kc2 Uploaded 21-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer, estimator=sklearn.tree.tree.DecisionTreeClassifier)(22)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,estimator=sklearn.tree.tree.DecisionTreeClassifier)(22)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,estimator=sklearn.tree.tree.DecisionTreeClassifier)(22)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.preprocessing.imputation.Imputer(53)_axis0
sklearn.preprocessing.imputation.Imputer(53)_copytrue
sklearn.preprocessing.imputation.Imputer(53)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(53)_strategy"mean"
sklearn.preprocessing.imputation.Imputer(53)_verbose0
sklearn.tree.tree.DecisionTreeClassifier(67)_class_weightnull
sklearn.tree.tree.DecisionTreeClassifier(67)_criterion"gini"
sklearn.tree.tree.DecisionTreeClassifier(67)_max_depthnull
sklearn.tree.tree.DecisionTreeClassifier(67)_max_featuresnull
sklearn.tree.tree.DecisionTreeClassifier(67)_max_leaf_nodesnull
sklearn.tree.tree.DecisionTreeClassifier(67)_min_impurity_decrease0.0
sklearn.tree.tree.DecisionTreeClassifier(67)_min_impurity_splitnull
sklearn.tree.tree.DecisionTreeClassifier(67)_min_samples_leaf1
sklearn.tree.tree.DecisionTreeClassifier(67)_min_samples_split2
sklearn.tree.tree.DecisionTreeClassifier(67)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(67)_presortfalse
sklearn.tree.tree.DecisionTreeClassifier(67)_random_state61210
sklearn.tree.tree.DecisionTreeClassifier(67)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6675
Per class
Cross-validation details (33% Holdout set)
0.7772
Per class
Cross-validation details (33% Holdout set)
0.3625
Cross-validation details (33% Holdout set)
0.1437
Cross-validation details (33% Holdout set)
0.2461
Cross-validation details (33% Holdout set)
0.3291
Cross-validation details (33% Holdout set)
0.7674
Cross-validation details (33% Holdout set)
172
Per class
Cross-validation details (33% Holdout set)
0.7921
Per class
Cross-validation details (33% Holdout set)
0.7674
Cross-validation details (33% Holdout set)
0.7402
Cross-validation details (33% Holdout set)
0.7478
Cross-validation details (33% Holdout set)
0.4068
Cross-validation details (33% Holdout set)
0.4827
Cross-validation details (33% Holdout set)
1.1866
Cross-validation details (33% Holdout set)
0.6998
Cross-validation details (33% Holdout set)