Run
10560587

Run 10560587

Task 11 (Supervised Classification) balance-scale Uploaded 14-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.linear_model.logistic.LogisticRegression(38)Logistic Regression (aka logit, MaxEnt) classifier. In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the cross- entropy loss if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag' and 'newton-cg' solvers.) This class implements regularized logistic regression using the 'liblinear' library, 'newton-cg', 'sag' and 'lbfgs' solvers. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied). The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization with primal formulation. The 'liblinear' solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty.
sklearn.linear_model.logistic.LogisticRegression(38)_C0.001
sklearn.linear_model.logistic.LogisticRegression(38)_class_weight"balanced"
sklearn.linear_model.logistic.LogisticRegression(38)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(38)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(38)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(38)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(38)_multi_class"auto"
` for more details.">sklearn.linear_model.logistic.LogisticRegression(38)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(38)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(38)_random_state3433
sklearn.linear_model.logistic.LogisticRegression(38)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(38)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(38)_verbose0
sklearn.linear_model.logistic.LogisticRegression(38)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9513 ± 0.009
Per class
Cross-validation details (10-fold Crossvalidation)
0.8843 ± 0.0352
Per class
Cross-validation details (10-fold Crossvalidation)
0.7935 ± 0.0617
Cross-validation details (10-fold Crossvalidation)
0.0291 ± 0.0135
Cross-validation details (10-fold Crossvalidation)
0.4005 ± 0.0045
Cross-validation details (10-fold Crossvalidation)
0.3798 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
0.8816 ± 0.0355
Cross-validation details (10-fold Crossvalidation)
625
Per class
Cross-validation details (10-fold Crossvalidation)
0.8875 ± 0.0344
Per class
Cross-validation details (10-fold Crossvalidation)
0.8816 ± 0.0355
Cross-validation details (10-fold Crossvalidation)
1.3181 ± 0.0124
Cross-validation details (10-fold Crossvalidation)
1.0546 ± 0.0115
Cross-validation details (10-fold Crossvalidation)
0.4356 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.4275 ± 0.0044
Cross-validation details (10-fold Crossvalidation)
0.9815 ± 0.0096
Cross-validation details (10-fold Crossvalidation)
0.7676 ± 0.0858
Cross-validation details (10-fold Crossvalidation)