Run
10560568

Run 10560568

Task 146817 (Supervised Classification) steel-plates-fault Uploaded 14-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transfo rmer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=s klearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imp uter,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=skle arn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotenco der=sklearn.preprocessing._encoders.OneHotEncoder)),sgdclassifier=sklearn.l inear_model.stochastic_gradient.SGDClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.preprocessing.imputation.Imputer(56)_axis0
sklearn.preprocessing.imputation.Imputer(56)_copytrue
sklearn.preprocessing.imputation.Imputer(56)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(56)_strategy"mean"
sklearn.preprocessing.imputation.Imputer(56)_verbose0
sklearn.preprocessing.data.StandardScaler(44)_copytrue
sklearn.preprocessing.data.StandardScaler(44)_with_meantrue
sklearn.preprocessing.data.StandardScaler(44)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(7)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(7)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
sklearn.impute.SimpleImputer(19)_copytrue
sklearn.impute.SimpleImputer(19)_fill_value-1
sklearn.impute.SimpleImputer(19)_missing_valuesNaN
sklearn.impute.SimpleImputer(19)_strategy"constant"
sklearn.impute.SimpleImputer(19)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(28)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(28)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(28)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(28)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(28)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(28)_sparsetrue
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(3)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "numeric", "step_name": "numeric", "argument_1": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "nominal", "step_name": "nominal", "argument_1": []}}]
sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(3)_memorynull
sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler)(3)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "missingindicator", "step_name": "missingindicator"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
sklearn.impute.MissingIndicator(4)_error_on_newfalse
sklearn.impute.MissingIndicator(4)_features"missing-only"
sklearn.impute.MissingIndicator(4)_missing_valuesNaN
sklearn.impute.MissingIndicator(4)_sparse"auto"
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),sgdclassifier=sklearn.linear_model.stochastic_gradient.SGDClassifier)(2)_memorynull
sklearn.pipeline.Pipeline(columntransformer=sklearn.compose._column_transformer.ColumnTransformer(numeric=sklearn.pipeline.Pipeline(missingindicator=sklearn.impute.MissingIndicator,imputer=sklearn.preprocessing.imputation.Imputer,standardscaler=sklearn.preprocessing.data.StandardScaler),nominal=sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),sgdclassifier=sklearn.linear_model.stochastic_gradient.SGDClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "sgdclassifier", "step_name": "sgdclassifier"}}]
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_alpha3.8875083608209314e-05
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_averagetrue
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_class_weightnull
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_early_stoppingfalse
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_epsilon0.1
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_eta00.0
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_fit_intercepttrue
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_l1_ratio0.15
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_learning_rate"optimal"
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_loss"hinge"
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_max_iternull
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_n_iternull
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_n_iter_no_change5
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_n_jobsnull
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_penalty"l2"
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_power_t0.5
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_random_state40835
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_shuffletrue
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_tol4.896672457206874e-05
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_validation_fraction0.1
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_verbose0
sklearn.linear_model.stochastic_gradient.SGDClassifier(11)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7089 ± 0.0243
Per class
Cross-validation details (10-fold Crossvalidation)
0.5644 ± 0.0419
Per class
Cross-validation details (10-fold Crossvalidation)
0.4423 ± 0.047
Cross-validation details (10-fold Crossvalidation)
0.4828 ± 0.0403
Cross-validation details (10-fold Crossvalidation)
0.1182 ± 0.0094
Cross-validation details (10-fold Crossvalidation)
0.2223 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.5863 ± 0.0329
Cross-validation details (10-fold Crossvalidation)
1941
Per class
Cross-validation details (10-fold Crossvalidation)
0.5883 ± 0.0494
Per class
Cross-validation details (10-fold Crossvalidation)
0.5863 ± 0.0329
Cross-validation details (10-fold Crossvalidation)
2.4107 ± 0.0095
Cross-validation details (10-fold Crossvalidation)
0.5316 ± 0.0423
Cross-validation details (10-fold Crossvalidation)
0.3334 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.3438 ± 0.0136
Cross-validation details (10-fold Crossvalidation)
1.0313 ± 0.0409
Cross-validation details (10-fold Crossvalidation)
0.4926 ± 0.0454
Cross-validation details (10-fold Crossvalidation)