Run
10560537

Run 10560537

Task 23 (Supervised Classification) cmc Uploaded 14-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer, OneHotEncoder=sklearn.preprocessing.data.OneHotEncoder,LogisticRegression=s klearn.linear_model.logistic.LogisticRegression)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,OneHotEncoder=sklearn.preprocessing.data.OneHotEncoder,LogisticRegression=sklearn.linear_model.logistic.LogisticRegression)(2)_memorynull
sklearn.pipeline.Pipeline(Imputer=sklearn.preprocessing.imputation.Imputer,OneHotEncoder=sklearn.preprocessing.data.OneHotEncoder,LogisticRegression=sklearn.linear_model.logistic.LogisticRegression)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "Imputer", "step_name": "Imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "OneHotEncoder", "step_name": "OneHotEncoder"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "LogisticRegression", "step_name": "LogisticRegression"}}]
sklearn.preprocessing.imputation.Imputer(55)_axis0
sklearn.preprocessing.imputation.Imputer(55)_copytrue
sklearn.preprocessing.imputation.Imputer(55)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(55)_strategy"median"
sklearn.preprocessing.imputation.Imputer(55)_verbose0
sklearn.preprocessing.data.OneHotEncoder(32)_categorical_features"all"
sklearn.preprocessing.data.OneHotEncoder(32)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing.data.OneHotEncoder(32)_handle_unknown"ignore"
sklearn.preprocessing.data.OneHotEncoder(32)_n_values"auto"
sklearn.preprocessing.data.OneHotEncoder(32)_sparsefalse
sklearn.linear_model.logistic.LogisticRegression(37)_C1.0
sklearn.linear_model.logistic.LogisticRegression(37)_class_weightnull
sklearn.linear_model.logistic.LogisticRegression(37)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(37)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(37)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(37)_max_iter100
sklearn.linear_model.logistic.LogisticRegression(37)_multi_class"ovr"
sklearn.linear_model.logistic.LogisticRegression(37)_n_jobs1
sklearn.linear_model.logistic.LogisticRegression(37)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(37)_random_state11870
sklearn.linear_model.logistic.LogisticRegression(37)_solver"liblinear"
sklearn.linear_model.logistic.LogisticRegression(37)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(37)_verbose0
sklearn.linear_model.logistic.LogisticRegression(37)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7261 ± 0.0352
Per class
Cross-validation details (10-fold Crossvalidation)
0.5465 ± 0.049
Per class
Cross-validation details (10-fold Crossvalidation)
0.2969 ± 0.0768
Cross-validation details (10-fold Crossvalidation)
0.2287 ± 0.0262
Cross-validation details (10-fold Crossvalidation)
0.3631 ± 0.0102
Cross-validation details (10-fold Crossvalidation)
0.4308 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.5513 ± 0.05
Cross-validation details (10-fold Crossvalidation)
1473
Per class
Cross-validation details (10-fold Crossvalidation)
0.5465 ± 0.0509
Per class
Cross-validation details (10-fold Crossvalidation)
0.5513 ± 0.05
Cross-validation details (10-fold Crossvalidation)
1.539 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.8428 ± 0.0239
Cross-validation details (10-fold Crossvalidation)
0.4641 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.4285 ± 0.0116
Cross-validation details (10-fold Crossvalidation)
0.9232 ± 0.0251
Cross-validation details (10-fold Crossvalidation)
0.5186 ± 0.0493
Cross-validation details (10-fold Crossvalidation)