Run
10560534

Run 10560534

Task 167141 (Supervised Classification) churn Uploaded 14-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(robustscaler=sklearn.preprocessing.data.RobustSca ler,kneighborsclassifier=sklearn.neighbors.classification.KNeighborsClassif ier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.neighbors.classification.KNeighborsClassifier(45)_algorithm"auto"
sklearn.neighbors.classification.KNeighborsClassifier(45)_leaf_size30
sklearn.neighbors.classification.KNeighborsClassifier(45)_metric"minkowski"
sklearn.neighbors.classification.KNeighborsClassifier(45)_metric_paramsnull
sklearn.neighbors.classification.KNeighborsClassifier(45)_n_jobs1
sklearn.neighbors.classification.KNeighborsClassifier(45)_n_neighbors5
sklearn.neighbors.classification.KNeighborsClassifier(45)_p2
sklearn.neighbors.classification.KNeighborsClassifier(45)_weights"uniform"
sklearn.pipeline.Pipeline(robustscaler=sklearn.preprocessing.data.RobustScaler,kneighborsclassifier=sklearn.neighbors.classification.KNeighborsClassifier)(2)_memorynull
sklearn.pipeline.Pipeline(robustscaler=sklearn.preprocessing.data.RobustScaler,kneighborsclassifier=sklearn.neighbors.classification.KNeighborsClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "robustscaler", "step_name": "robustscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "kneighborsclassifier", "step_name": "kneighborsclassifier"}}]
sklearn.preprocessing.data.RobustScaler(6)_copytrue
sklearn.preprocessing.data.RobustScaler(6)_quantile_range[25.0, 75.0]
sklearn.preprocessing.data.RobustScaler(6)_with_centeringtrue
sklearn.preprocessing.data.RobustScaler(6)_with_scalingtrue

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8023 ± 0.0265
Per class
Cross-validation details (10-fold Crossvalidation)
0.8668 ± 0.011
Per class
Cross-validation details (10-fold Crossvalidation)
0.3779 ± 0.0514
Cross-validation details (10-fold Crossvalidation)
0.2264 ± 0.0377
Cross-validation details (10-fold Crossvalidation)
0.1473 ± 0.0066
Cross-validation details (10-fold Crossvalidation)
0.2429 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.8916 ± 0.0079
Cross-validation details (10-fold Crossvalidation)
5000
Per class
Cross-validation details (10-fold Crossvalidation)
0.8885 ± 0.0142
Per class
Cross-validation details (10-fold Crossvalidation)
0.8916 ± 0.0079
Cross-validation details (10-fold Crossvalidation)
0.5879 ± 0.0025
Cross-validation details (10-fold Crossvalidation)
0.6065 ± 0.0258
Cross-validation details (10-fold Crossvalidation)
0.3484 ± 0.001
Cross-validation details (10-fold Crossvalidation)
0.2952 ± 0.0098
Cross-validation details (10-fold Crossvalidation)
0.8473 ± 0.0266
Cross-validation details (10-fold Crossvalidation)
0.6356 ± 0.021
Cross-validation details (10-fold Crossvalidation)