Run
10560526

Run 10560526

Task 146819 (Supervised Classification) climate-model-simulation-crashes Uploaded 14-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(pca=sklearn.decomposition.pca.PCA,gradientboostin gclassifier=sklearn.ensemble.gradient_boosting.GradientBoostingClassifier)( 2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.pipeline.Pipeline(pca=sklearn.decomposition.pca.PCA,gradientboostingclassifier=sklearn.ensemble.gradient_boosting.GradientBoostingClassifier)(2)_memorynull
sklearn.pipeline.Pipeline(pca=sklearn.decomposition.pca.PCA,gradientboostingclassifier=sklearn.ensemble.gradient_boosting.GradientBoostingClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "pca", "step_name": "pca"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "gradientboostingclassifier", "step_name": "gradientboostingclassifier"}}]
sklearn.decomposition.pca.PCA(12)_copytrue
sklearn.decomposition.pca.PCA(12)_iterated_power9
sklearn.decomposition.pca.PCA(12)_n_componentsnull
sklearn.decomposition.pca.PCA(12)_random_state37180
sklearn.decomposition.pca.PCA(12)_svd_solver"randomized"
sklearn.decomposition.pca.PCA(12)_tol0.0
sklearn.decomposition.pca.PCA(12)_whitenfalse
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(27)_criterion"friedman_mse"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(27)_initnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(27)_learning_rate0.5
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(27)_loss"deviance"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(27)_max_depth4
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(27)_max_features0.6000000000000001
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(27)_max_leaf_nodesnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(27)_min_impurity_decrease0.0
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(27)_min_impurity_splitnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(27)_min_samples_leaf8
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(27)_min_samples_split11
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(27)_min_weight_fraction_leaf0.0
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(27)_n_estimators100
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(27)_presort"auto"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(27)_random_state61384
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(27)_subsample0.15000000000000002
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(27)_verbose0
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(27)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5467 ± 0.0938
Per class
Cross-validation details (10-fold Crossvalidation)
0.804 ± 0.0797
Per class
Cross-validation details (10-fold Crossvalidation)
0.0577 ± 0.1183
Cross-validation details (10-fold Crossvalidation)
-1.0476 ± 1.1025
Cross-validation details (10-fold Crossvalidation)
0.2352 ± 0.1168
Cross-validation details (10-fold Crossvalidation)
0.1571 ± 0.0079
Cross-validation details (10-fold Crossvalidation)
0.7648 ± 0.1168
Cross-validation details (10-fold Crossvalidation)
540
Per class
Cross-validation details (10-fold Crossvalidation)
0.8554 ± 0.0248
Per class
Cross-validation details (10-fold Crossvalidation)
0.7648 ± 0.1168
Cross-validation details (10-fold Crossvalidation)
0.4202 ± 0.0325
Cross-validation details (10-fold Crossvalidation)
1.4968 ± 0.7804
Cross-validation details (10-fold Crossvalidation)
0.2792 ± 0.0143
Cross-validation details (10-fold Crossvalidation)
0.485 ± 0.1121
Cross-validation details (10-fold Crossvalidation)
1.7372 ± 0.428
Cross-validation details (10-fold Crossvalidation)
0.5462 ± 0.0938
Cross-validation details (10-fold Crossvalidation)