Run
10560500

Run 10560500

Task 146819 (Supervised Classification) climate-model-simulation-crashes Uploaded 14-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer, estimator=sklearn.tree.tree.DecisionTreeClassifier)(22)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,estimator=sklearn.tree.tree.DecisionTreeClassifier)(22)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,estimator=sklearn.tree.tree.DecisionTreeClassifier)(22)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.preprocessing.imputation.Imputer(53)_axis0
sklearn.preprocessing.imputation.Imputer(53)_copytrue
sklearn.preprocessing.imputation.Imputer(53)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(53)_strategy"mean"
sklearn.preprocessing.imputation.Imputer(53)_verbose0
sklearn.tree.tree.DecisionTreeClassifier(67)_class_weightnull
sklearn.tree.tree.DecisionTreeClassifier(67)_criterion"gini"
sklearn.tree.tree.DecisionTreeClassifier(67)_max_depthnull
sklearn.tree.tree.DecisionTreeClassifier(67)_max_featuresnull
sklearn.tree.tree.DecisionTreeClassifier(67)_max_leaf_nodesnull
sklearn.tree.tree.DecisionTreeClassifier(67)_min_impurity_decrease0.0
sklearn.tree.tree.DecisionTreeClassifier(67)_min_impurity_splitnull
sklearn.tree.tree.DecisionTreeClassifier(67)_min_samples_leaf1
sklearn.tree.tree.DecisionTreeClassifier(67)_min_samples_split2
sklearn.tree.tree.DecisionTreeClassifier(67)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(67)_presortfalse
sklearn.tree.tree.DecisionTreeClassifier(67)_random_state33778
sklearn.tree.tree.DecisionTreeClassifier(67)_splitter"best"

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6663 ± 0.1294
Per class
Cross-validation details (10-fold Crossvalidation)
0.895 ± 0.027
Per class
Cross-validation details (10-fold Crossvalidation)
0.3294 ± 0.2431
Cross-validation details (10-fold Crossvalidation)
0.081 ± 0.3075
Cross-validation details (10-fold Crossvalidation)
0.1056 ± 0.029
Cross-validation details (10-fold Crossvalidation)
0.1571 ± 0.0079
Cross-validation details (10-fold Crossvalidation)
0.8944 ± 0.029
Cross-validation details (10-fold Crossvalidation)
540
Per class
Cross-validation details (10-fold Crossvalidation)
0.8955 ± 0.0314
Per class
Cross-validation details (10-fold Crossvalidation)
0.8944 ± 0.029
Cross-validation details (10-fold Crossvalidation)
0.4202 ± 0.0325
Cross-validation details (10-fold Crossvalidation)
0.6718 ± 0.2092
Cross-validation details (10-fold Crossvalidation)
0.2792 ± 0.0143
Cross-validation details (10-fold Crossvalidation)
0.3249 ± 0.0437
Cross-validation details (10-fold Crossvalidation)
1.1638 ± 0.2002
Cross-validation details (10-fold Crossvalidation)
0.6663 ± 0.1294
Cross-validation details (10-fold Crossvalidation)