Run
10560464

Run 10560464

Task 167140 (Supervised Classification) dna Uploaded 14-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputation=sklearn.preprocessing.imputation.Imput er,classifier=sklearn.tree.tree.DecisionTreeClassifier)(3)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.preprocessing.imputation.Imputer(52)_axis0
sklearn.preprocessing.imputation.Imputer(52)_copytrue
sklearn.preprocessing.imputation.Imputer(52)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(52)_strategy"median"
sklearn.preprocessing.imputation.Imputer(52)_verbose0
sklearn.tree.tree.DecisionTreeClassifier(66)_class_weightnull
sklearn.tree.tree.DecisionTreeClassifier(66)_criterion"entropy"
sklearn.tree.tree.DecisionTreeClassifier(66)_max_depth0.2801630246326896
sklearn.tree.tree.DecisionTreeClassifier(66)_max_features1.0
sklearn.tree.tree.DecisionTreeClassifier(66)_max_leaf_nodesnull
sklearn.tree.tree.DecisionTreeClassifier(66)_min_impurity_split1e-07
sklearn.tree.tree.DecisionTreeClassifier(66)_min_samples_leaf18
sklearn.tree.tree.DecisionTreeClassifier(66)_min_samples_split16
sklearn.tree.tree.DecisionTreeClassifier(66)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(66)_presortfalse
sklearn.tree.tree.DecisionTreeClassifier(66)_random_state28589
sklearn.tree.tree.DecisionTreeClassifier(66)_splitter"best"
sklearn.pipeline.Pipeline(imputation=sklearn.preprocessing.imputation.Imputer,classifier=sklearn.tree.tree.DecisionTreeClassifier)(3)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputation", "step_name": "imputation"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}]

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.4984
Per class
Cross-validation details (10-fold Crossvalidation)
0.0002 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.4099 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.41 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.5191 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
3186
Per class
Cross-validation details (10-fold Crossvalidation)
0.5191 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
1.4798 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.9999 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.4527 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.4527 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
1 ± 0
Cross-validation details (10-fold Crossvalidation)
0.3333
Cross-validation details (10-fold Crossvalidation)