Run
10560452

Run 10560452

Task 146800 (Supervised Classification) MiceProtein Uploaded 14-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer, estimator=sklearn.ensemble.forest.RandomForestClassifier)(7)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.ensemble.forest.RandomForestClassifier(67)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(67)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(67)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(67)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(67)_max_features"auto"
sklearn.ensemble.forest.RandomForestClassifier(67)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(67)_min_impurity_split1e-07
sklearn.ensemble.forest.RandomForestClassifier(67)_min_samples_leaf1
sklearn.ensemble.forest.RandomForestClassifier(67)_min_samples_split2
sklearn.ensemble.forest.RandomForestClassifier(67)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(67)_n_estimators10
sklearn.ensemble.forest.RandomForestClassifier(67)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(67)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(67)_random_state42489
sklearn.ensemble.forest.RandomForestClassifier(67)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(67)_warm_startfalse
sklearn.preprocessing.imputation.Imputer(52)_axis0
sklearn.preprocessing.imputation.Imputer(52)_copytrue
sklearn.preprocessing.imputation.Imputer(52)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(52)_strategy"median"
sklearn.preprocessing.imputation.Imputer(52)_verbose0
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,estimator=sklearn.ensemble.forest.RandomForestClassifier)(7)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9979 ± 0.0013
Per class
Cross-validation details (10-fold Crossvalidation)
0.9602 ± 0.0158
Per class
Cross-validation details (10-fold Crossvalidation)
0.9544 ± 0.018
Cross-validation details (10-fold Crossvalidation)
0.8364 ± 0.0098
Cross-validation details (10-fold Crossvalidation)
0.0647 ± 0.0031
Cross-validation details (10-fold Crossvalidation)
0.2185 ± 0
Cross-validation details (10-fold Crossvalidation)
0.9602 ± 0.0158
Cross-validation details (10-fold Crossvalidation)
1080
Per class
Cross-validation details (10-fold Crossvalidation)
0.9604 ± 0.0154
Per class
Cross-validation details (10-fold Crossvalidation)
0.9602 ± 0.0158
Cross-validation details (10-fold Crossvalidation)
2.993 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
0.2962 ± 0.0143
Cross-validation details (10-fold Crossvalidation)
0.3305 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.1387 ± 0.0048
Cross-validation details (10-fold Crossvalidation)
0.4196 ± 0.0144
Cross-validation details (10-fold Crossvalidation)
0.96 ± 0.016
Cross-validation details (10-fold Crossvalidation)