Run
10560450

Run 10560450

Task 146824 (Supervised Classification) mfeat-pixel Uploaded 14-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn. tree.tree.ExtraTreeClassifier)(2)An AdaBoost classifier. An AdaBoost [1] classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances are adjusted such that subsequent classifiers focus more on difficult cases. This class implements the algorithm known as AdaBoost-SAMME [2].
sklearn.tree.tree.ExtraTreeClassifier(28)_class_weightnull
sklearn.tree.tree.ExtraTreeClassifier(28)_criterion"gini"
sklearn.tree.tree.ExtraTreeClassifier(28)_max_depth1000
sklearn.tree.tree.ExtraTreeClassifier(28)_max_features"auto"
sklearn.tree.tree.ExtraTreeClassifier(28)_max_leaf_nodesnull
sklearn.tree.tree.ExtraTreeClassifier(28)_min_impurity_split1e-07
sklearn.tree.tree.ExtraTreeClassifier(28)_min_samples_leaf1
sklearn.tree.tree.ExtraTreeClassifier(28)_min_samples_split2
sklearn.tree.tree.ExtraTreeClassifier(28)_min_weight_fraction_leaf0.0
sklearn.tree.tree.ExtraTreeClassifier(28)_random_state61795
sklearn.tree.tree.ExtraTreeClassifier(28)_splitter"random"
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.ExtraTreeClassifier)(2)_algorithm"SAMME.R"
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.ExtraTreeClassifier)(2)_learning_rate0.003
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.ExtraTreeClassifier)(2)_n_estimators512
sklearn.ensemble.weight_boosting.AdaBoostClassifier(base_estimator=sklearn.tree.tree.ExtraTreeClassifier)(2)_random_state3

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9092 ± 0.0117
Per class
Cross-validation details (10-fold Crossvalidation)
0.8365 ± 0.0206
Per class
Cross-validation details (10-fold Crossvalidation)
0.8183 ± 0.0234
Cross-validation details (10-fold Crossvalidation)
0.829 ± 0.0221
Cross-validation details (10-fold Crossvalidation)
0.0327 ± 0.0042
Cross-validation details (10-fold Crossvalidation)
0.18
Cross-validation details (10-fold Crossvalidation)
0.8365 ± 0.0211
Cross-validation details (10-fold Crossvalidation)
2000
Per class
Cross-validation details (10-fold Crossvalidation)
0.8371 ± 0.0184
Per class
Cross-validation details (10-fold Crossvalidation)
0.8365 ± 0.0211
Cross-validation details (10-fold Crossvalidation)
3.3219
Cross-validation details (10-fold Crossvalidation)
0.1817 ± 0.0234
Cross-validation details (10-fold Crossvalidation)
0.3
Cross-validation details (10-fold Crossvalidation)
0.1808 ± 0.0118
Cross-validation details (10-fold Crossvalidation)
0.6028 ± 0.0395
Cross-validation details (10-fold Crossvalidation)
0.8365 ± 0.0211
Cross-validation details (10-fold Crossvalidation)