Run
10560415

Run 10560415

Task 146817 (Supervised Classification) steel-plates-fault Uploaded 13-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer, pca=sklearn.decomposition.pca.PCA,gradientboostingclassifier=sklearn.ensemb le.gradient_boosting.GradientBoostingClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.decomposition.pca.PCA(11)_copytrue
sklearn.decomposition.pca.PCA(11)_iterated_power"auto"
sklearn.decomposition.pca.PCA(11)_n_componentsnull
sklearn.decomposition.pca.PCA(11)_random_state59376
sklearn.decomposition.pca.PCA(11)_svd_solver"auto"
sklearn.decomposition.pca.PCA(11)_tol0.0
sklearn.decomposition.pca.PCA(11)_whitenfalse
sklearn.preprocessing.imputation.Imputer(52)_axis0
sklearn.preprocessing.imputation.Imputer(52)_copytrue
sklearn.preprocessing.imputation.Imputer(52)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(52)_strategy"median"
sklearn.preprocessing.imputation.Imputer(52)_verbose0
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_criterion"friedman_mse"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_initnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_learning_rate0.05
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_loss"deviance"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_max_depth6
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_max_featuresnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_max_leaf_nodesnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_min_impurity_split1e-07
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_min_samples_leaf1
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_min_samples_split2
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_min_weight_fraction_leaf0.0
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_n_estimators50
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_presort"auto"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_random_state28076
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_subsample0.5
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_verbose0
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_warm_startfalse
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,pca=sklearn.decomposition.pca.PCA,gradientboostingclassifier=sklearn.ensemble.gradient_boosting.GradientBoostingClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "pca", "step_name": "pca"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "gradientboostingclassifier", "step_name": "gradientboostingclassifier"}}]

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9282 ± 0.0115
Per class
Cross-validation details (10-fold Crossvalidation)
0.7472 ± 0.0311
Per class
Cross-validation details (10-fold Crossvalidation)
0.6683 ± 0.0419
Cross-validation details (10-fold Crossvalidation)
0.6419 ± 0.0239
Cross-validation details (10-fold Crossvalidation)
0.1043 ± 0.0053
Cross-validation details (10-fold Crossvalidation)
0.2223 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.7486 ± 0.0317
Cross-validation details (10-fold Crossvalidation)
1941
Per class
Cross-validation details (10-fold Crossvalidation)
0.7627 ± 0.0314
Per class
Cross-validation details (10-fold Crossvalidation)
0.7486 ± 0.0317
Cross-validation details (10-fold Crossvalidation)
2.4107 ± 0.0095
Cross-validation details (10-fold Crossvalidation)
0.4691 ± 0.0236
Cross-validation details (10-fold Crossvalidation)
0.3334 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.2204 ± 0.0098
Cross-validation details (10-fold Crossvalidation)
0.6611 ± 0.0291
Cross-validation details (10-fold Crossvalidation)
0.7066 ± 0.0473
Cross-validation details (10-fold Crossvalidation)