Run
10560388

Run 10560388

Task 9952 (Supervised Classification) phoneme Uploaded 13-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(gradientboostingclassifier=sklearn.ensemble.gradi ent_boosting.GradientBoostingClassifier)(4)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.pipeline.Pipeline(gradientboostingclassifier=sklearn.ensemble.gradient_boosting.GradientBoostingClassifier)(4)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "gradientboostingclassifier", "step_name": "gradientboostingclassifier"}}]
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_criterion"friedman_mse"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_initnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_learning_rate0.05
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_loss"deviance"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_max_depth6
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_max_featuresnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_max_leaf_nodesnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_min_impurity_split1e-07
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_min_samples_leaf1
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_min_samples_split2
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_min_weight_fraction_leaf0.0
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_n_estimators50
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_presort"auto"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_random_state60925
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_subsample0.5
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_verbose0
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9405 ± 0.0113
Per class
Cross-validation details (10-fold Crossvalidation)
0.8784 ± 0.0187
Per class
Cross-validation details (10-fold Crossvalidation)
0.7041 ± 0.0462
Cross-validation details (10-fold Crossvalidation)
0.5149 ± 0.0228
Cross-validation details (10-fold Crossvalidation)
0.2113 ± 0.0076
Cross-validation details (10-fold Crossvalidation)
0.4147 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.8795 ± 0.0182
Cross-validation details (10-fold Crossvalidation)
5404
Per class
Cross-validation details (10-fold Crossvalidation)
0.8779 ± 0.0189
Per class
Cross-validation details (10-fold Crossvalidation)
0.8795 ± 0.0182
Cross-validation details (10-fold Crossvalidation)
0.8732 ± 0.001
Cross-validation details (10-fold Crossvalidation)
0.5095 ± 0.0184
Cross-validation details (10-fold Crossvalidation)
0.4554 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.2997 ± 0.0124
Cross-validation details (10-fold Crossvalidation)
0.6582 ± 0.0271
Cross-validation details (10-fold Crossvalidation)
0.8456 ± 0.0255
Cross-validation details (10-fold Crossvalidation)