Run
10560381

Run 10560381

Task 146820 (Supervised Classification) wilt Uploaded 13-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer, kernelpca=sklearn.decomposition.kernel_pca.KernelPCA,randomforestclassifier =sklearn.ensemble.forest.RandomForestClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.ensemble.forest.RandomForestClassifier(67)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(67)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(67)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(67)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(67)_max_features"auto"
sklearn.ensemble.forest.RandomForestClassifier(67)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(67)_min_impurity_split1e-07
sklearn.ensemble.forest.RandomForestClassifier(67)_min_samples_leaf1
sklearn.ensemble.forest.RandomForestClassifier(67)_min_samples_split2
sklearn.ensemble.forest.RandomForestClassifier(67)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(67)_n_estimators10
sklearn.ensemble.forest.RandomForestClassifier(67)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(67)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(67)_random_state33563
sklearn.ensemble.forest.RandomForestClassifier(67)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(67)_warm_startfalse
sklearn.preprocessing.imputation.Imputer(52)_axis0
sklearn.preprocessing.imputation.Imputer(52)_copytrue
sklearn.preprocessing.imputation.Imputer(52)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(52)_strategy"median"
sklearn.preprocessing.imputation.Imputer(52)_verbose0
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,kernelpca=sklearn.decomposition.kernel_pca.KernelPCA,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "kernelpca", "step_name": "kernelpca"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "randomforestclassifier", "step_name": "randomforestclassifier"}}]
sklearn.decomposition.kernel_pca.KernelPCA(2)_alpha1.0
sklearn.decomposition.kernel_pca.KernelPCA(2)_coef01
sklearn.decomposition.kernel_pca.KernelPCA(2)_copy_Xtrue
sklearn.decomposition.kernel_pca.KernelPCA(2)_degree3
sklearn.decomposition.kernel_pca.KernelPCA(2)_eigen_solver"auto"
sklearn.decomposition.kernel_pca.KernelPCA(2)_fit_inverse_transformfalse
sklearn.decomposition.kernel_pca.KernelPCA(2)_gammanull
sklearn.decomposition.kernel_pca.KernelPCA(2)_kernel"rbf"
sklearn.decomposition.kernel_pca.KernelPCA(2)_kernel_paramsnull
sklearn.decomposition.kernel_pca.KernelPCA(2)_max_iternull
sklearn.decomposition.kernel_pca.KernelPCA(2)_n_componentsnull
sklearn.decomposition.kernel_pca.KernelPCA(2)_n_jobs-1
sklearn.decomposition.kernel_pca.KernelPCA(2)_random_state47267
sklearn.decomposition.kernel_pca.KernelPCA(2)_remove_zero_eigfalse
sklearn.decomposition.kernel_pca.KernelPCA(2)_tol0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5207 ± 0.0246
Per class
Cross-validation details (10-fold Crossvalidation)
0.9238 ± 0.0023
Per class
Cross-validation details (10-fold Crossvalidation)
0.0565 ± 0.0435
Cross-validation details (10-fold Crossvalidation)
-0.2648 ± 0.9108
Cross-validation details (10-fold Crossvalidation)
0.0743 ± 0.0306
Cross-validation details (10-fold Crossvalidation)
0.1022 ± 0.0006
Cross-validation details (10-fold Crossvalidation)
0.9477 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
4839
Per class
Cross-validation details (10-fold Crossvalidation)
0.9505 ± 0.0011
Per class
Cross-validation details (10-fold Crossvalidation)
0.9477 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.3029 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.7274 ± 0.2991
Cross-validation details (10-fold Crossvalidation)
0.2259 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.2274 ± 0.0036
Cross-validation details (10-fold Crossvalidation)
1.0068 ± 0.0156
Cross-validation details (10-fold Crossvalidation)
0.5153 ± 0.0121
Cross-validation details (10-fold Crossvalidation)