Run
10560315

Run 10560315

Task 37 (Supervised Classification) diabetes Uploaded 13-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(pca=sklearn.decomposition.pca.PCA,extratreesclass ifier=sklearn.ensemble.forest.ExtraTreesClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.decomposition.pca.PCA(11)_copytrue
sklearn.decomposition.pca.PCA(11)_iterated_power"auto"
sklearn.decomposition.pca.PCA(11)_n_componentsnull
sklearn.decomposition.pca.PCA(11)_random_state2979
sklearn.decomposition.pca.PCA(11)_svd_solver"auto"
sklearn.decomposition.pca.PCA(11)_tol0.0
sklearn.decomposition.pca.PCA(11)_whitenfalse
sklearn.ensemble.forest.ExtraTreesClassifier(15)_bootstrapfalse
sklearn.ensemble.forest.ExtraTreesClassifier(15)_class_weightnull
sklearn.ensemble.forest.ExtraTreesClassifier(15)_criterion"gini"
sklearn.ensemble.forest.ExtraTreesClassifier(15)_max_depthnull
sklearn.ensemble.forest.ExtraTreesClassifier(15)_max_features"auto"
sklearn.ensemble.forest.ExtraTreesClassifier(15)_max_leaf_nodesnull
sklearn.ensemble.forest.ExtraTreesClassifier(15)_min_impurity_split1e-07
sklearn.ensemble.forest.ExtraTreesClassifier(15)_min_samples_leaf1
sklearn.ensemble.forest.ExtraTreesClassifier(15)_min_samples_split2
sklearn.ensemble.forest.ExtraTreesClassifier(15)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.ExtraTreesClassifier(15)_n_estimators100
sklearn.ensemble.forest.ExtraTreesClassifier(15)_n_jobs-1
sklearn.ensemble.forest.ExtraTreesClassifier(15)_oob_scorefalse
sklearn.ensemble.forest.ExtraTreesClassifier(15)_random_state6914
sklearn.ensemble.forest.ExtraTreesClassifier(15)_verbose0
sklearn.ensemble.forest.ExtraTreesClassifier(15)_warm_startfalse
sklearn.pipeline.Pipeline(pca=sklearn.decomposition.pca.PCA,extratreesclassifier=sklearn.ensemble.forest.ExtraTreesClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "pca", "step_name": "pca"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "extratreesclassifier", "step_name": "extratreesclassifier"}}]

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8191 ± 0.0467
Per class
Cross-validation details (10-fold Crossvalidation)
0.7556 ± 0.035
Per class
Cross-validation details (10-fold Crossvalidation)
0.4514 ± 0.0767
Cross-validation details (10-fold Crossvalidation)
0.2803 ± 0.0514
Cross-validation details (10-fold Crossvalidation)
0.3335 ± 0.0191
Cross-validation details (10-fold Crossvalidation)
0.4545 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.7643 ± 0.0359
Cross-validation details (10-fold Crossvalidation)
768
Per class
Cross-validation details (10-fold Crossvalidation)
0.7585 ± 0.039
Per class
Cross-validation details (10-fold Crossvalidation)
0.7643 ± 0.0359
Cross-validation details (10-fold Crossvalidation)
0.9331 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
0.7339 ± 0.0424
Cross-validation details (10-fold Crossvalidation)
0.4766 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.4028 ± 0.0213
Cross-validation details (10-fold Crossvalidation)
0.8451 ± 0.0454
Cross-validation details (10-fold Crossvalidation)
0.7134 ± 0.0353
Cross-validation details (10-fold Crossvalidation)