Run
10560297

Run 10560297

Task 11 (Supervised Classification) balance-scale Uploaded 13-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.Standar dScaler,logisticregression=sklearn.linear_model.logistic.LogisticRegression )(5)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.linear_model.logistic.LogisticRegression(36)_C1.0
sklearn.linear_model.logistic.LogisticRegression(36)_class_weightnull
sklearn.linear_model.logistic.LogisticRegression(36)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(36)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(36)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(36)_max_iter100
sklearn.linear_model.logistic.LogisticRegression(36)_multi_class"ovr"
sklearn.linear_model.logistic.LogisticRegression(36)_n_jobs1
sklearn.linear_model.logistic.LogisticRegression(36)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(36)_random_state39789
sklearn.linear_model.logistic.LogisticRegression(36)_solver"liblinear"
sklearn.linear_model.logistic.LogisticRegression(36)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(36)_verbose0
sklearn.linear_model.logistic.LogisticRegression(36)_warm_startfalse
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler,logisticregression=sklearn.linear_model.logistic.LogisticRegression)(5)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "logisticregression", "step_name": "logisticregression"}}]
sklearn.preprocessing.data.StandardScaler(43)_copytrue
sklearn.preprocessing.data.StandardScaler(43)_with_meantrue
sklearn.preprocessing.data.StandardScaler(43)_with_stdtrue

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.9643 ± 0.0098
Per class
Cross-validation details (10-fold Crossvalidation)
0.7478 ± 0.0478
Cross-validation details (10-fold Crossvalidation)
0.6212 ± 0.0208
Cross-validation details (10-fold Crossvalidation)
0.1377 ± 0.0079
Cross-validation details (10-fold Crossvalidation)
0.3798 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
0.864 ± 0.0261
Cross-validation details (10-fold Crossvalidation)
625
Per class
Cross-validation details (10-fold Crossvalidation)
0.864 ± 0.0261
Cross-validation details (10-fold Crossvalidation)
1.3181 ± 0.0124
Cross-validation details (10-fold Crossvalidation)
0.3626 ± 0.0205
Cross-validation details (10-fold Crossvalidation)
0.4356 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.2384 ± 0.0147
Cross-validation details (10-fold Crossvalidation)
0.5473 ± 0.0331
Cross-validation details (10-fold Crossvalidation)
0.625 ± 0.0173
Cross-validation details (10-fold Crossvalidation)