Run
10560269

Run 10560269

Task 11 (Supervised Classification) balance-scale Uploaded 13-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(minmaxscaler=sklearn.preprocessing.data.MinMaxSca ler,pca=sklearn.decomposition.pca.PCA,randomforestclassifier=sklearn.ensemb le.forest.RandomForestClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.preprocessing.data.MinMaxScaler(7)_copytrue
sklearn.preprocessing.data.MinMaxScaler(7)_feature_range[0, 1]
sklearn.decomposition.pca.PCA(11)_copytrue
sklearn.decomposition.pca.PCA(11)_iterated_power"auto"
sklearn.decomposition.pca.PCA(11)_n_componentsnull
sklearn.decomposition.pca.PCA(11)_random_state20202
sklearn.decomposition.pca.PCA(11)_svd_solver"auto"
sklearn.decomposition.pca.PCA(11)_tol0.0
sklearn.decomposition.pca.PCA(11)_whitenfalse
sklearn.ensemble.forest.RandomForestClassifier(67)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(67)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(67)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(67)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(67)_max_features"auto"
sklearn.ensemble.forest.RandomForestClassifier(67)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(67)_min_impurity_split1e-07
sklearn.ensemble.forest.RandomForestClassifier(67)_min_samples_leaf1
sklearn.ensemble.forest.RandomForestClassifier(67)_min_samples_split2
sklearn.ensemble.forest.RandomForestClassifier(67)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(67)_n_estimators10
sklearn.ensemble.forest.RandomForestClassifier(67)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(67)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(67)_random_state35569
sklearn.ensemble.forest.RandomForestClassifier(67)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(67)_warm_startfalse
sklearn.pipeline.Pipeline(minmaxscaler=sklearn.preprocessing.data.MinMaxScaler,pca=sklearn.decomposition.pca.PCA,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "minmaxscaler", "step_name": "minmaxscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "pca", "step_name": "pca"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "randomforestclassifier", "step_name": "randomforestclassifier"}}]

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9624 ± 0.0244
Per class
Cross-validation details (10-fold Crossvalidation)
0.8631 ± 0.0528
Per class
Cross-validation details (10-fold Crossvalidation)
0.7773 ± 0.0834
Cross-validation details (10-fold Crossvalidation)
0.67 ± 0.1049
Cross-validation details (10-fold Crossvalidation)
0.1282 ± 0.0363
Cross-validation details (10-fold Crossvalidation)
0.3798 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
0.8768 ± 0.0468
Cross-validation details (10-fold Crossvalidation)
625
Per class
Cross-validation details (10-fold Crossvalidation)
0.8564 ± 0.0633
Per class
Cross-validation details (10-fold Crossvalidation)
0.8768 ± 0.0468
Cross-validation details (10-fold Crossvalidation)
1.3181 ± 0.0124
Cross-validation details (10-fold Crossvalidation)
0.3376 ± 0.0952
Cross-validation details (10-fold Crossvalidation)
0.4356 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.2465 ± 0.0393
Cross-validation details (10-fold Crossvalidation)
0.5659 ± 0.0896
Cross-validation details (10-fold Crossvalidation)
0.6851 ± 0.0899
Cross-validation details (10-fold Crossvalidation)