Run
10560245

Run 10560245

Task 167141 (Supervised Classification) churn Uploaded 13-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer, pca=sklearn.decomposition.pca.PCA,gradientboostingclassifier=sklearn.ensemb le.gradient_boosting.GradientBoostingClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.decomposition.pca.PCA(11)_copytrue
sklearn.decomposition.pca.PCA(11)_iterated_power"auto"
sklearn.decomposition.pca.PCA(11)_n_componentsnull
sklearn.decomposition.pca.PCA(11)_random_state16184
sklearn.decomposition.pca.PCA(11)_svd_solver"auto"
sklearn.decomposition.pca.PCA(11)_tol0.0
sklearn.decomposition.pca.PCA(11)_whitenfalse
sklearn.preprocessing.imputation.Imputer(52)_axis0
sklearn.preprocessing.imputation.Imputer(52)_copytrue
sklearn.preprocessing.imputation.Imputer(52)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(52)_strategy"median"
sklearn.preprocessing.imputation.Imputer(52)_verbose0
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_criterion"friedman_mse"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_initnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_learning_rate0.05
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_loss"deviance"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_max_depth6
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_max_featuresnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_max_leaf_nodesnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_min_impurity_split1e-07
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_min_samples_leaf1
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_min_samples_split2
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_min_weight_fraction_leaf0.0
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_n_estimators50
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_presort"auto"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_random_state52270
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_subsample0.5
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_verbose0
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_warm_startfalse
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,pca=sklearn.decomposition.pca.PCA,gradientboostingclassifier=sklearn.ensemble.gradient_boosting.GradientBoostingClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "pca", "step_name": "pca"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "gradientboostingclassifier", "step_name": "gradientboostingclassifier"}}]

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9213 ± 0.0216
Per class
Cross-validation details (10-fold Crossvalidation)
0.9472 ± 0.0109
Per class
Cross-validation details (10-fold Crossvalidation)
0.7705 ± 0.049
Cross-validation details (10-fold Crossvalidation)
0.6013 ± 0.0436
Cross-validation details (10-fold Crossvalidation)
0.0996 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.2429 ± 0.0007
Cross-validation details (10-fold Crossvalidation)
0.9504 ± 0.0098
Cross-validation details (10-fold Crossvalidation)
5000
Per class
Cross-validation details (10-fold Crossvalidation)
0.95 ± 0.0109
Per class
Cross-validation details (10-fold Crossvalidation)
0.9504 ± 0.0098
Cross-validation details (10-fold Crossvalidation)
0.5879 ± 0.0025
Cross-validation details (10-fold Crossvalidation)
0.4099 ± 0.0293
Cross-validation details (10-fold Crossvalidation)
0.3484 ± 0.001
Cross-validation details (10-fold Crossvalidation)
0.2037 ± 0.0157
Cross-validation details (10-fold Crossvalidation)
0.5846 ± 0.0453
Cross-validation details (10-fold Crossvalidation)
0.8429 ± 0.0268
Cross-validation details (10-fold Crossvalidation)