Run
10560177

Run 10560177

Task 9957 (Supervised Classification) qsar-biodeg Uploaded 13-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(gradientboostingclassifier=sklearn.ensemble.gradi ent_boosting.GradientBoostingClassifier)(4)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.pipeline.Pipeline(gradientboostingclassifier=sklearn.ensemble.gradient_boosting.GradientBoostingClassifier)(4)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "gradientboostingclassifier", "step_name": "gradientboostingclassifier"}}]
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_criterion"friedman_mse"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_initnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_learning_rate0.05
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_loss"deviance"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_max_depth6
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_max_featuresnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_max_leaf_nodesnull
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_min_impurity_split1e-07
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_min_samples_leaf1
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_min_samples_split2
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_min_weight_fraction_leaf0.0
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_n_estimators50
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_presort"auto"
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_random_state23363
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_subsample0.5
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_verbose0
sklearn.ensemble.gradient_boosting.GradientBoostingClassifier(26)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.927 ± 0.0317
Per class
Cross-validation details (10-fold Crossvalidation)
0.8702 ± 0.037
Per class
Cross-validation details (10-fold Crossvalidation)
0.7063 ± 0.0853
Cross-validation details (10-fold Crossvalidation)
0.5574 ± 0.0585
Cross-validation details (10-fold Crossvalidation)
0.2095 ± 0.0232
Cross-validation details (10-fold Crossvalidation)
0.4472 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
0.872 ± 0.0358
Cross-validation details (10-fold Crossvalidation)
1055
Per class
Cross-validation details (10-fold Crossvalidation)
0.8707 ± 0.0374
Per class
Cross-validation details (10-fold Crossvalidation)
0.872 ± 0.0358
Cross-validation details (10-fold Crossvalidation)
0.9223 ± 0.0036
Cross-validation details (10-fold Crossvalidation)
0.4684 ± 0.0521
Cross-validation details (10-fold Crossvalidation)
0.4728 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.3106 ± 0.0312
Cross-validation details (10-fold Crossvalidation)
0.657 ± 0.0662
Cross-validation details (10-fold Crossvalidation)
0.8442 ± 0.0461
Cross-validation details (10-fold Crossvalidation)