Run
10560175

Run 10560175

Task 9957 (Supervised Classification) qsar-biodeg Uploaded 13-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.Standar dScaler,logisticregression=sklearn.linear_model.logistic.LogisticRegression )(5)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.linear_model.logistic.LogisticRegression(36)_C1.0
sklearn.linear_model.logistic.LogisticRegression(36)_class_weightnull
sklearn.linear_model.logistic.LogisticRegression(36)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(36)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(36)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(36)_max_iter100
sklearn.linear_model.logistic.LogisticRegression(36)_multi_class"ovr"
sklearn.linear_model.logistic.LogisticRegression(36)_n_jobs1
sklearn.linear_model.logistic.LogisticRegression(36)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(36)_random_state63495
sklearn.linear_model.logistic.LogisticRegression(36)_solver"liblinear"
sklearn.linear_model.logistic.LogisticRegression(36)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(36)_verbose0
sklearn.linear_model.logistic.LogisticRegression(36)_warm_startfalse
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler,logisticregression=sklearn.linear_model.logistic.LogisticRegression)(5)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "logisticregression", "step_name": "logisticregression"}}]
sklearn.preprocessing.data.StandardScaler(43)_copytrue
sklearn.preprocessing.data.StandardScaler(43)_with_meantrue
sklearn.preprocessing.data.StandardScaler(43)_with_stdtrue

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9251 ± 0.0302
Per class
Cross-validation details (10-fold Crossvalidation)
0.8706 ± 0.0254
Per class
Cross-validation details (10-fold Crossvalidation)
0.7097 ± 0.0581
Cross-validation details (10-fold Crossvalidation)
0.5795 ± 0.0398
Cross-validation details (10-fold Crossvalidation)
0.1946 ± 0.0162
Cross-validation details (10-fold Crossvalidation)
0.4472 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
0.8711 ± 0.025
Cross-validation details (10-fold Crossvalidation)
1055
Per class
Cross-validation details (10-fold Crossvalidation)
0.8703 ± 0.0275
Per class
Cross-validation details (10-fold Crossvalidation)
0.8711 ± 0.025
Cross-validation details (10-fold Crossvalidation)
0.9223 ± 0.0036
Cross-validation details (10-fold Crossvalidation)
0.4352 ± 0.0359
Cross-validation details (10-fold Crossvalidation)
0.4728 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.313 ± 0.0278
Cross-validation details (10-fold Crossvalidation)
0.6619 ± 0.0584
Cross-validation details (10-fold Crossvalidation)
0.8524 ± 0.0355
Cross-validation details (10-fold Crossvalidation)