Run
10560166

Run 10560166

Task 3549 (Supervised Classification) analcatdata_authorship Uploaded 13-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer, polynomialfeatures=sklearn.preprocessing.data.PolynomialFeatures,pca=sklear n.decomposition.pca.PCA,randomforestclassifier=sklearn.ensemble.forest.Rand omForestClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.preprocessing.data.PolynomialFeatures(6)_degree2
sklearn.preprocessing.data.PolynomialFeatures(6)_include_biastrue
sklearn.preprocessing.data.PolynomialFeatures(6)_interaction_onlyfalse
sklearn.decomposition.pca.PCA(11)_copytrue
sklearn.decomposition.pca.PCA(11)_iterated_power"auto"
sklearn.decomposition.pca.PCA(11)_n_componentsnull
sklearn.decomposition.pca.PCA(11)_random_state37448
sklearn.decomposition.pca.PCA(11)_svd_solver"auto"
sklearn.decomposition.pca.PCA(11)_tol0.0
sklearn.decomposition.pca.PCA(11)_whitenfalse
sklearn.ensemble.forest.RandomForestClassifier(67)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(67)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(67)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(67)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(67)_max_features"auto"
sklearn.ensemble.forest.RandomForestClassifier(67)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(67)_min_impurity_split1e-07
sklearn.ensemble.forest.RandomForestClassifier(67)_min_samples_leaf1
sklearn.ensemble.forest.RandomForestClassifier(67)_min_samples_split2
sklearn.ensemble.forest.RandomForestClassifier(67)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(67)_n_estimators10
sklearn.ensemble.forest.RandomForestClassifier(67)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(67)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(67)_random_state24183
sklearn.ensemble.forest.RandomForestClassifier(67)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(67)_warm_startfalse
sklearn.preprocessing.imputation.Imputer(52)_axis0
sklearn.preprocessing.imputation.Imputer(52)_copytrue
sklearn.preprocessing.imputation.Imputer(52)_missing_values"NaN"
sklearn.preprocessing.imputation.Imputer(52)_strategy"median"
sklearn.preprocessing.imputation.Imputer(52)_verbose0
sklearn.pipeline.Pipeline(imputer=sklearn.preprocessing.imputation.Imputer,polynomialfeatures=sklearn.preprocessing.data.PolynomialFeatures,pca=sklearn.decomposition.pca.PCA,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "polynomialfeatures", "step_name": "polynomialfeatures"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "pca", "step_name": "pca"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "randomforestclassifier", "step_name": "randomforestclassifier"}}]

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8114 ± 0.0423
Per class
Cross-validation details (10-fold Crossvalidation)
0.5804 ± 0.0559
Per class
Cross-validation details (10-fold Crossvalidation)
0.3922 ± 0.0763
Cross-validation details (10-fold Crossvalidation)
0.2925 ± 0.0426
Cross-validation details (10-fold Crossvalidation)
0.2793 ± 0.0125
Cross-validation details (10-fold Crossvalidation)
0.3439 ± 0.0013
Cross-validation details (10-fold Crossvalidation)
0.6017 ± 0.0495
Cross-validation details (10-fold Crossvalidation)
841
Per class
Cross-validation details (10-fold Crossvalidation)
0.6223 ± 0.067
Per class
Cross-validation details (10-fold Crossvalidation)
0.6017 ± 0.0495
Cross-validation details (10-fold Crossvalidation)
1.7874 ± 0.0186
Cross-validation details (10-fold Crossvalidation)
0.8122 ± 0.0364
Cross-validation details (10-fold Crossvalidation)
0.4146 ± 0.0015
Cross-validation details (10-fold Crossvalidation)
0.3613 ± 0.0141
Cross-validation details (10-fold Crossvalidation)
0.8714 ± 0.0342
Cross-validation details (10-fold Crossvalidation)
0.4787 ± 0.0457
Cross-validation details (10-fold Crossvalidation)