Run
10560146

Run 10560146

Task 10093 (Supervised Classification) banknote-authentication Uploaded 13-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.Standar dScaler,votingclassifier=sklearn.ensemble.voting_classifier.VotingClassifie r(DecisionTreeClassifier=sklearn.tree.tree.DecisionTreeClassifier,ExtraTree Classifier=sklearn.tree.tree.ExtraTreeClassifier))(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.preprocessing.data.StandardScaler(43)_copytrue
sklearn.preprocessing.data.StandardScaler(43)_with_meantrue
sklearn.preprocessing.data.StandardScaler(43)_with_stdtrue
sklearn.tree.tree.DecisionTreeClassifier(66)_class_weightnull
sklearn.tree.tree.DecisionTreeClassifier(66)_criterion"gini"
sklearn.tree.tree.DecisionTreeClassifier(66)_max_depthnull
sklearn.tree.tree.DecisionTreeClassifier(66)_max_featuresnull
sklearn.tree.tree.DecisionTreeClassifier(66)_max_leaf_nodesnull
sklearn.tree.tree.DecisionTreeClassifier(66)_min_impurity_split1e-07
sklearn.tree.tree.DecisionTreeClassifier(66)_min_samples_leaf1
sklearn.tree.tree.DecisionTreeClassifier(66)_min_samples_split2
sklearn.tree.tree.DecisionTreeClassifier(66)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(66)_presortfalse
sklearn.tree.tree.DecisionTreeClassifier(66)_random_state43481
sklearn.tree.tree.DecisionTreeClassifier(66)_splitter"best"
sklearn.tree.tree.ExtraTreeClassifier(28)_class_weightnull
sklearn.tree.tree.ExtraTreeClassifier(28)_criterion"gini"
sklearn.tree.tree.ExtraTreeClassifier(28)_max_depth1000
sklearn.tree.tree.ExtraTreeClassifier(28)_max_features"auto"
sklearn.tree.tree.ExtraTreeClassifier(28)_max_leaf_nodesnull
sklearn.tree.tree.ExtraTreeClassifier(28)_min_impurity_split1e-07
sklearn.tree.tree.ExtraTreeClassifier(28)_min_samples_leaf1
sklearn.tree.tree.ExtraTreeClassifier(28)_min_samples_split2
sklearn.tree.tree.ExtraTreeClassifier(28)_min_weight_fraction_leaf0.0
sklearn.tree.tree.ExtraTreeClassifier(28)_random_state4300
sklearn.tree.tree.ExtraTreeClassifier(28)_splitter"random"
sklearn.ensemble.voting_classifier.VotingClassifier(DecisionTreeClassifier=sklearn.tree.tree.DecisionTreeClassifier,ExtraTreeClassifier=sklearn.tree.tree.ExtraTreeClassifier)(2)_estimators[{"oml-python:serialized_object": "component_reference", "value": {"key": "DecisionTreeClassifier", "step_name": "DecisionTreeClassifier"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "ExtraTreeClassifier", "step_name": "ExtraTreeClassifier"}}]
sklearn.ensemble.voting_classifier.VotingClassifier(DecisionTreeClassifier=sklearn.tree.tree.DecisionTreeClassifier,ExtraTreeClassifier=sklearn.tree.tree.ExtraTreeClassifier)(2)_n_jobs1
sklearn.ensemble.voting_classifier.VotingClassifier(DecisionTreeClassifier=sklearn.tree.tree.DecisionTreeClassifier,ExtraTreeClassifier=sklearn.tree.tree.ExtraTreeClassifier)(2)_voting"hard"
sklearn.ensemble.voting_classifier.VotingClassifier(DecisionTreeClassifier=sklearn.tree.tree.DecisionTreeClassifier,ExtraTreeClassifier=sklearn.tree.tree.ExtraTreeClassifier)(2)_weightsnull
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler,votingclassifier=sklearn.ensemble.voting_classifier.VotingClassifier(DecisionTreeClassifier=sklearn.tree.tree.DecisionTreeClassifier,ExtraTreeClassifier=sklearn.tree.tree.ExtraTreeClassifier))(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "votingclassifier", "step_name": "votingclassifier"}}]

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9862 ± 0.0102
Per class
Cross-validation details (10-fold Crossvalidation)
0.9876 ± 0.0092
Per class
Cross-validation details (10-fold Crossvalidation)
0.9748 ± 0.0186
Cross-validation details (10-fold Crossvalidation)
0.9748 ± 0.0186
Cross-validation details (10-fold Crossvalidation)
0.0124 ± 0.0091
Cross-validation details (10-fold Crossvalidation)
0.4939 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.9876 ± 0.0091
Cross-validation details (10-fold Crossvalidation)
1372
Per class
Cross-validation details (10-fold Crossvalidation)
0.9878 ± 0.0087
Per class
Cross-validation details (10-fold Crossvalidation)
0.9876 ± 0.0091
Cross-validation details (10-fold Crossvalidation)
0.9911 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
0.0251 ± 0.0185
Cross-validation details (10-fold Crossvalidation)
0.4969 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.1113 ± 0.0571
Cross-validation details (10-fold Crossvalidation)
0.224 ± 0.115
Cross-validation details (10-fold Crossvalidation)
0.9862 ± 0.0102
Cross-validation details (10-fold Crossvalidation)