Run
10560122

Run 10560122

Task 10101 (Supervised Classification) blood-transfusion-service-center Uploaded 13-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.Standar dScaler,votingclassifier=sklearn.ensemble.voting_classifier.VotingClassifie r(DecisionTreeClassifier=sklearn.tree.tree.DecisionTreeClassifier,ExtraTree Classifier=sklearn.tree.tree.ExtraTreeClassifier))(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.preprocessing.data.StandardScaler(43)_copytrue
sklearn.preprocessing.data.StandardScaler(43)_with_meantrue
sklearn.preprocessing.data.StandardScaler(43)_with_stdtrue
sklearn.tree.tree.DecisionTreeClassifier(66)_class_weightnull
sklearn.tree.tree.DecisionTreeClassifier(66)_criterion"gini"
sklearn.tree.tree.DecisionTreeClassifier(66)_max_depthnull
sklearn.tree.tree.DecisionTreeClassifier(66)_max_featuresnull
sklearn.tree.tree.DecisionTreeClassifier(66)_max_leaf_nodesnull
sklearn.tree.tree.DecisionTreeClassifier(66)_min_impurity_split1e-07
sklearn.tree.tree.DecisionTreeClassifier(66)_min_samples_leaf1
sklearn.tree.tree.DecisionTreeClassifier(66)_min_samples_split2
sklearn.tree.tree.DecisionTreeClassifier(66)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(66)_presortfalse
sklearn.tree.tree.DecisionTreeClassifier(66)_random_state56709
sklearn.tree.tree.DecisionTreeClassifier(66)_splitter"best"
sklearn.tree.tree.ExtraTreeClassifier(28)_class_weightnull
sklearn.tree.tree.ExtraTreeClassifier(28)_criterion"gini"
sklearn.tree.tree.ExtraTreeClassifier(28)_max_depth1000
sklearn.tree.tree.ExtraTreeClassifier(28)_max_features"auto"
sklearn.tree.tree.ExtraTreeClassifier(28)_max_leaf_nodesnull
sklearn.tree.tree.ExtraTreeClassifier(28)_min_impurity_split1e-07
sklearn.tree.tree.ExtraTreeClassifier(28)_min_samples_leaf1
sklearn.tree.tree.ExtraTreeClassifier(28)_min_samples_split2
sklearn.tree.tree.ExtraTreeClassifier(28)_min_weight_fraction_leaf0.0
sklearn.tree.tree.ExtraTreeClassifier(28)_random_state43465
sklearn.tree.tree.ExtraTreeClassifier(28)_splitter"random"
sklearn.ensemble.voting_classifier.VotingClassifier(DecisionTreeClassifier=sklearn.tree.tree.DecisionTreeClassifier,ExtraTreeClassifier=sklearn.tree.tree.ExtraTreeClassifier)(2)_estimators[{"oml-python:serialized_object": "component_reference", "value": {"key": "DecisionTreeClassifier", "step_name": "DecisionTreeClassifier"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "ExtraTreeClassifier", "step_name": "ExtraTreeClassifier"}}]
sklearn.ensemble.voting_classifier.VotingClassifier(DecisionTreeClassifier=sklearn.tree.tree.DecisionTreeClassifier,ExtraTreeClassifier=sklearn.tree.tree.ExtraTreeClassifier)(2)_n_jobs1
sklearn.ensemble.voting_classifier.VotingClassifier(DecisionTreeClassifier=sklearn.tree.tree.DecisionTreeClassifier,ExtraTreeClassifier=sklearn.tree.tree.ExtraTreeClassifier)(2)_voting"hard"
sklearn.ensemble.voting_classifier.VotingClassifier(DecisionTreeClassifier=sklearn.tree.tree.DecisionTreeClassifier,ExtraTreeClassifier=sklearn.tree.tree.ExtraTreeClassifier)(2)_weightsnull
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler,votingclassifier=sklearn.ensemble.voting_classifier.VotingClassifier(DecisionTreeClassifier=sklearn.tree.tree.DecisionTreeClassifier,ExtraTreeClassifier=sklearn.tree.tree.ExtraTreeClassifier))(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "votingclassifier", "step_name": "votingclassifier"}}]

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5557 ± 0.0597
Per class
Cross-validation details (10-fold Crossvalidation)
0.7054 ± 0.0445
Per class
Cross-validation details (10-fold Crossvalidation)
0.1336 ± 0.1322
Cross-validation details (10-fold Crossvalidation)
0.1856 ± 0.1079
Cross-validation details (10-fold Crossvalidation)
0.262 ± 0.0353
Cross-validation details (10-fold Crossvalidation)
0.363 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.738 ± 0.0353
Cross-validation details (10-fold Crossvalidation)
748
Per class
Cross-validation details (10-fold Crossvalidation)
0.6939 ± 0.0523
Per class
Cross-validation details (10-fold Crossvalidation)
0.738 ± 0.0353
Cross-validation details (10-fold Crossvalidation)
0.7916 ± 0.0072
Cross-validation details (10-fold Crossvalidation)
0.7218 ± 0.0961
Cross-validation details (10-fold Crossvalidation)
0.4258 ± 0.0027
Cross-validation details (10-fold Crossvalidation)
0.5119 ± 0.0353
Cross-validation details (10-fold Crossvalidation)
1.2021 ± 0.0806
Cross-validation details (10-fold Crossvalidation)
0.5557 ± 0.0597
Cross-validation details (10-fold Crossvalidation)