Run
10560107

Run 10560107

Task 11 (Supervised Classification) balance-scale Uploaded 13-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(polynomialfeatures=sklearn.preprocessing.data.Pol ynomialFeatures,minmaxscaler=sklearn.preprocessing.data.MinMaxScaler,pca=sk learn.decomposition.pca.PCA,randomforestclassifier=sklearn.ensemble.forest. RandomForestClassifier)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None.
sklearn.preprocessing.data.MinMaxScaler(7)_copytrue
sklearn.preprocessing.data.MinMaxScaler(7)_feature_range[0, 1]
sklearn.preprocessing.data.PolynomialFeatures(6)_degree2
sklearn.preprocessing.data.PolynomialFeatures(6)_include_biastrue
sklearn.preprocessing.data.PolynomialFeatures(6)_interaction_onlyfalse
sklearn.decomposition.pca.PCA(11)_copytrue
sklearn.decomposition.pca.PCA(11)_iterated_power"auto"
sklearn.decomposition.pca.PCA(11)_n_componentsnull
sklearn.decomposition.pca.PCA(11)_random_state9711
sklearn.decomposition.pca.PCA(11)_svd_solver"auto"
sklearn.decomposition.pca.PCA(11)_tol0.0
sklearn.decomposition.pca.PCA(11)_whitenfalse
sklearn.ensemble.forest.RandomForestClassifier(67)_bootstraptrue
sklearn.ensemble.forest.RandomForestClassifier(67)_class_weightnull
sklearn.ensemble.forest.RandomForestClassifier(67)_criterion"gini"
sklearn.ensemble.forest.RandomForestClassifier(67)_max_depthnull
sklearn.ensemble.forest.RandomForestClassifier(67)_max_features"auto"
sklearn.ensemble.forest.RandomForestClassifier(67)_max_leaf_nodesnull
sklearn.ensemble.forest.RandomForestClassifier(67)_min_impurity_split1e-07
sklearn.ensemble.forest.RandomForestClassifier(67)_min_samples_leaf1
sklearn.ensemble.forest.RandomForestClassifier(67)_min_samples_split2
sklearn.ensemble.forest.RandomForestClassifier(67)_min_weight_fraction_leaf0.0
sklearn.ensemble.forest.RandomForestClassifier(67)_n_estimators10
sklearn.ensemble.forest.RandomForestClassifier(67)_n_jobs1
sklearn.ensemble.forest.RandomForestClassifier(67)_oob_scorefalse
sklearn.ensemble.forest.RandomForestClassifier(67)_random_state37613
sklearn.ensemble.forest.RandomForestClassifier(67)_verbose0
sklearn.ensemble.forest.RandomForestClassifier(67)_warm_startfalse
sklearn.pipeline.Pipeline(polynomialfeatures=sklearn.preprocessing.data.PolynomialFeatures,minmaxscaler=sklearn.preprocessing.data.MinMaxScaler,pca=sklearn.decomposition.pca.PCA,randomforestclassifier=sklearn.ensemble.forest.RandomForestClassifier)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "polynomialfeatures", "step_name": "polynomialfeatures"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "minmaxscaler", "step_name": "minmaxscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "pca", "step_name": "pca"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "randomforestclassifier", "step_name": "randomforestclassifier"}}]

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9817 ± 0.0091
Per class
Cross-validation details (10-fold Crossvalidation)
0.9095 ± 0.0423
Per class
Cross-validation details (10-fold Crossvalidation)
0.8527 ± 0.0599
Cross-validation details (10-fold Crossvalidation)
0.6775 ± 0.0483
Cross-validation details (10-fold Crossvalidation)
0.1385 ± 0.0179
Cross-validation details (10-fold Crossvalidation)
0.3798 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
0.9184 ± 0.0323
Cross-validation details (10-fold Crossvalidation)
625
Per class
Cross-validation details (10-fold Crossvalidation)
0.9122 ± 0.0545
Per class
Cross-validation details (10-fold Crossvalidation)
0.9184 ± 0.0323
Cross-validation details (10-fold Crossvalidation)
1.3181 ± 0.0124
Cross-validation details (10-fold Crossvalidation)
0.3646 ± 0.0465
Cross-validation details (10-fold Crossvalidation)
0.4356 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.2276 ± 0.0207
Cross-validation details (10-fold Crossvalidation)
0.5226 ± 0.0467
Cross-validation details (10-fold Crossvalidation)
0.766 ± 0.0944
Cross-validation details (10-fold Crossvalidation)