Run
10560103

Run 10560103

Task 11 (Supervised Classification) balance-scale Uploaded 13-08-2021 by Sergey Redyuk
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear _model.logistic.LogisticRegression)(2)Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated search over parameter settings. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters.
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model.logistic.LogisticRegression)(2)_cvnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model.logistic.LogisticRegression)(2)_error_score"raise"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model.logistic.LogisticRegression)(2)_fit_params{}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model.logistic.LogisticRegression)(2)_iidtrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model.logistic.LogisticRegression)(2)_n_iter10
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model.logistic.LogisticRegression)(2)_n_jobs1
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model.logistic.LogisticRegression)(2)_param_distributions{"C": [0.0001, 0.001, 0.01, 0.1, 1.0, 10, 100, 1000, 10000, 1000000], "solver": ["liblinear", "sag"], "tol": [1e-06, 1e-05, 0.0001, 0.001]}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model.logistic.LogisticRegression)(2)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model.logistic.LogisticRegression)(2)_random_state46395
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model.logistic.LogisticRegression)(2)_refittrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model.logistic.LogisticRegression)(2)_return_train_scoretrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model.logistic.LogisticRegression)(2)_scoringnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model.logistic.LogisticRegression)(2)_verbose0
sklearn.linear_model.logistic.LogisticRegression(36)_C1.0
sklearn.linear_model.logistic.LogisticRegression(36)_class_weightnull
sklearn.linear_model.logistic.LogisticRegression(36)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(36)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(36)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(36)_max_iter100
sklearn.linear_model.logistic.LogisticRegression(36)_multi_class"ovr"
sklearn.linear_model.logistic.LogisticRegression(36)_n_jobs1
sklearn.linear_model.logistic.LogisticRegression(36)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(36)_random_state7505
sklearn.linear_model.logistic.LogisticRegression(36)_solver"liblinear"
sklearn.linear_model.logistic.LogisticRegression(36)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(36)_verbose0
sklearn.linear_model.logistic.LogisticRegression(36)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

16 Evaluation measures

0.9274 ± 0.0117
Per class
Cross-validation details (10-fold Crossvalidation)
0.7418 ± 0.0384
Cross-validation details (10-fold Crossvalidation)
0.3229 ± 0.2657
Cross-validation details (10-fold Crossvalidation)
0.2577 ± 0.1035
Cross-validation details (10-fold Crossvalidation)
0.3798 ± 0.0012
Cross-validation details (10-fold Crossvalidation)
0.8608 ± 0.021
Cross-validation details (10-fold Crossvalidation)
625
Per class
Cross-validation details (10-fold Crossvalidation)
0.8608 ± 0.021
Cross-validation details (10-fold Crossvalidation)
1.3181 ± 0.0124
Cross-validation details (10-fold Crossvalidation)
0.6785 ± 0.2716
Cross-validation details (10-fold Crossvalidation)
0.4356 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.3388 ± 0.089
Cross-validation details (10-fold Crossvalidation)
0.7779 ± 0.2033
Cross-validation details (10-fold Crossvalidation)
0.6227 ± 0.0141
Cross-validation details (10-fold Crossvalidation)