Run
10559936

Run 10559936

Task 37 (Supervised Classification) diabetes Uploaded 12-07-2021 by Gokul Talele
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.linear_model.logistic.LogisticRegression(34)Logistic Regression (aka logit, MaxEnt) classifier. In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the cross-entropy loss if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag', 'saga' and 'newton-cg' solvers.) This class implements regularized logistic regression using the 'liblinear' library, 'newton-cg', 'sag', 'saga' and 'lbfgs' solvers. **Note that regularization is applied by default**. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied). The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization with primal formulation, or no regularization. The 'liblinear' solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. The Elastic-Net regularization is only su...
sklearn.linear_model.logistic.LogisticRegression(34)_C1.0
sklearn.linear_model.logistic.LogisticRegression(34)_class_weightnull
sklearn.linear_model.logistic.LogisticRegression(34)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(34)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(34)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(34)_l1_rationull
sklearn.linear_model.logistic.LogisticRegression(34)_max_iter100
sklearn.linear_model.logistic.LogisticRegression(34)_multi_class"warn"
` for more details">sklearn.linear_model.logistic.LogisticRegression(34)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(34)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(34)_random_state44136
sklearn.linear_model.logistic.LogisticRegression(34)_solver"warn"
sklearn.linear_model.logistic.LogisticRegression(34)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(34)_verbose0
sklearn.linear_model.logistic.LogisticRegression(34)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.8261 ± 0.0598
Per class
Cross-validation details (10-fold Crossvalidation)
0.7564 ± 0.0554
Per class
Cross-validation details (10-fold Crossvalidation)
0.4529 ± 0.1276
Cross-validation details (10-fold Crossvalidation)
0.2812 ± 0.0578
Cross-validation details (10-fold Crossvalidation)
0.3365 ± 0.0197
Cross-validation details (10-fold Crossvalidation)
0.4545 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.7656 ± 0.0502
Cross-validation details (10-fold Crossvalidation)
768
Per class
Cross-validation details (10-fold Crossvalidation)
0.7601 ± 0.055
Per class
Cross-validation details (10-fold Crossvalidation)
0.7656 ± 0.0502
Cross-validation details (10-fold Crossvalidation)
0.9331 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
0.7404 ± 0.044
Cross-validation details (10-fold Crossvalidation)
0.4766 ± 0.0011
Cross-validation details (10-fold Crossvalidation)
0.4002 ± 0.0288
Cross-validation details (10-fold Crossvalidation)
0.8396 ± 0.0613
Cross-validation details (10-fold Crossvalidation)
0.7135 ± 0.0661
Cross-validation details (10-fold Crossvalidation)