Run
10559877

Run 10559877

Task 3 (Supervised Classification) kr-vs-kp Uploaded 12-04-2021 by louisot milijaona
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.Conditiona lImputer,hotencoding=sklearn.compose._column_transformer.ColumnTransformer( enc=sklearn.preprocessing._encoders.OneHotEncoder),scaling=sklearn.preproce ssing._data.StandardScaler,variencethreshold=sklearn.feature_selection._var iance_threshold.VarianceThreshold,classifier=sklearn.svm._classes.SVC)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.compose._column_transformer.ColumnTransformer(enc=sklearn.preprocessing._encoders.OneHotEncoder),scaling=sklearn.preprocessing._data.StandardScaler,variencethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,classifier=sklearn.svm._classes.SVC)(1)_memorynull
sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.compose._column_transformer.ColumnTransformer(enc=sklearn.preprocessing._encoders.OneHotEncoder),scaling=sklearn.preprocessing._data.StandardScaler,variencethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,classifier=sklearn.svm._classes.SVC)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputation", "step_name": "imputation"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "hotencoding", "step_name": "hotencoding"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "scaling", "step_name": "scaling"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "variencethreshold", "step_name": "variencethreshold"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "classifier", "step_name": "classifier"}}]
sklearn.pipeline.Pipeline(imputation=openmlstudy14.preprocessing.ConditionalImputer,hotencoding=sklearn.compose._column_transformer.ColumnTransformer(enc=sklearn.preprocessing._encoders.OneHotEncoder),scaling=sklearn.preprocessing._data.StandardScaler,variencethreshold=sklearn.feature_selection._variance_threshold.VarianceThreshold,classifier=sklearn.svm._classes.SVC)(1)_verbosefalse
openmlstudy14.preprocessing.ConditionalImputer(10)_add_indicatorfalse
openmlstudy14.preprocessing.ConditionalImputer(10)_axis0
openmlstudy14.preprocessing.ConditionalImputer(10)_categorical_features[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]
openmlstudy14.preprocessing.ConditionalImputer(10)_copytrue
openmlstudy14.preprocessing.ConditionalImputer(10)_fill_empty0
openmlstudy14.preprocessing.ConditionalImputer(10)_missing_valuesNaN
openmlstudy14.preprocessing.ConditionalImputer(10)_strategy"mean"
openmlstudy14.preprocessing.ConditionalImputer(10)_strategy_nominal"most_frequent"
openmlstudy14.preprocessing.ConditionalImputer(10)_verbose0
sklearn.compose._column_transformer.ColumnTransformer(enc=sklearn.preprocessing._encoders.OneHotEncoder)(2)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(enc=sklearn.preprocessing._encoders.OneHotEncoder)(2)_remainder"passthrough"
sklearn.compose._column_transformer.ColumnTransformer(enc=sklearn.preprocessing._encoders.OneHotEncoder)(2)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(enc=sklearn.preprocessing._encoders.OneHotEncoder)(2)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(enc=sklearn.preprocessing._encoders.OneHotEncoder)(2)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "enc", "step_name": "enc", "argument_1": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]}}]
sklearn.compose._column_transformer.ColumnTransformer(enc=sklearn.preprocessing._encoders.OneHotEncoder)(2)_verbosefalse
sklearn.preprocessing._encoders.OneHotEncoder(26)_categories"auto"
sklearn.preprocessing._encoders.OneHotEncoder(26)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(26)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(26)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(26)_sparsefalse
sklearn.preprocessing._data.StandardScaler(7)_copytrue
sklearn.preprocessing._data.StandardScaler(7)_with_meanfalse
sklearn.preprocessing._data.StandardScaler(7)_with_stdtrue
sklearn.feature_selection._variance_threshold.VarianceThreshold(4)_threshold0.0
sklearn.svm._classes.SVC(8)_C0.559956366390858
sklearn.svm._classes.SVC(8)_break_tiesfalse
sklearn.svm._classes.SVC(8)_cache_size200
sklearn.svm._classes.SVC(8)_class_weightnull
sklearn.svm._classes.SVC(8)_coef00.12024401645987903
sklearn.svm._classes.SVC(8)_decision_function_shape"ovr"
sklearn.svm._classes.SVC(8)_degree3
sklearn.svm._classes.SVC(8)_gamma0.0004899581039164595
sklearn.svm._classes.SVC(8)_kernel"sigmoid"
sklearn.svm._classes.SVC(8)_max_iter-1
sklearn.svm._classes.SVC(8)_probabilityfalse
sklearn.svm._classes.SVC(8)_random_state21616
sklearn.svm._classes.SVC(8)_shrinkingfalse
sklearn.svm._classes.SVC(8)_tol0.00015812804979084444
sklearn.svm._classes.SVC(8)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.4636 ± 0.1157
Per class
Cross-validation details (10-fold Crossvalidation)
0.2949
Per class
Cross-validation details (10-fold Crossvalidation)
-0.0698 ± 0.2281
Cross-validation details (10-fold Crossvalidation)
-0.1171 ± 0.2217
Cross-validation details (10-fold Crossvalidation)
0.5569 ± 0.1105
Cross-validation details (10-fold Crossvalidation)
0.499 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4431 ± 0.1105
Cross-validation details (10-fold Crossvalidation)
3196
Per class
Cross-validation details (10-fold Crossvalidation)
0.2327
Per class
Cross-validation details (10-fold Crossvalidation)
0.4431 ± 0.1105
Cross-validation details (10-fold Crossvalidation)
0.9986 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
1.1161 ± 0.2215
Cross-validation details (10-fold Crossvalidation)
0.4995 ± 0
Cross-validation details (10-fold Crossvalidation)
0.7463 ± 0.0667
Cross-validation details (10-fold Crossvalidation)
1.4941 ± 0.1336
Cross-validation details (10-fold Crossvalidation)
0.4636 ± 0.1157
Cross-validation details (10-fold Crossvalidation)