Run
10559869

Run 10559869

Task 241 (Supervised Classification) balance-scale Uploaded 26-03-2021 by Tan Zheng
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.linear_model._logistic.LogisticRegression(5)Logistic Regression (aka logit, MaxEnt) classifier. In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the cross-entropy loss if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag', 'saga' and 'newton-cg' solvers.) This class implements regularized logistic regression using the 'liblinear' library, 'newton-cg', 'sag', 'saga' and 'lbfgs' solvers. **Note that regularization is applied by default**. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied). The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization with primal formulation, or no regularization. The 'liblinear' solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. The Elastic-Net regularization is only su...
sklearn.linear_model._logistic.LogisticRegression(5)_C1.0
sklearn.linear_model._logistic.LogisticRegression(5)_class_weightnull
sklearn.linear_model._logistic.LogisticRegression(5)_dualfalse
sklearn.linear_model._logistic.LogisticRegression(5)_fit_intercepttrue
sklearn.linear_model._logistic.LogisticRegression(5)_intercept_scaling1
sklearn.linear_model._logistic.LogisticRegression(5)_l1_rationull
sklearn.linear_model._logistic.LogisticRegression(5)_max_iter100
sklearn.linear_model._logistic.LogisticRegression(5)_multi_class"auto"
` for more details">sklearn.linear_model._logistic.LogisticRegression(5)_n_jobsnull
sklearn.linear_model._logistic.LogisticRegression(5)_penalty"l2"
sklearn.linear_model._logistic.LogisticRegression(5)_random_state2990
sklearn.linear_model._logistic.LogisticRegression(5)_solver"lbfgs"
sklearn.linear_model._logistic.LogisticRegression(5)_tol0.0001
sklearn.linear_model._logistic.LogisticRegression(5)_verbose0
sklearn.linear_model._logistic.LogisticRegression(5)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9661
Per class
Cross-validation details (33% Holdout set)
0.7908
Per class
Cross-validation details (33% Holdout set)
0.6772
Cross-validation details (33% Holdout set)
0.6959
Cross-validation details (33% Holdout set)
0.1256
Cross-validation details (33% Holdout set)
0.3857
Cross-validation details (33% Holdout set)
0.8204
Cross-validation details (33% Holdout set)
206
Per class
Cross-validation details (33% Holdout set)
0.8484
Per class
Cross-validation details (33% Holdout set)
0.8204
Cross-validation details (33% Holdout set)
1.3777
Cross-validation details (33% Holdout set)
0.3256
Cross-validation details (33% Holdout set)
0.4424
Cross-validation details (33% Holdout set)
0.2537
Cross-validation details (33% Holdout set)
0.5735
Cross-validation details (33% Holdout set)
0.6348
Cross-validation details (33% Holdout set)