Issue | #Downvotes for this reason | By |
---|
sklearn.linear_model._logistic.LogisticRegression(5) | Logistic Regression (aka logit, MaxEnt) classifier. In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the cross-entropy loss if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag', 'saga' and 'newton-cg' solvers.) This class implements regularized logistic regression using the 'liblinear' library, 'newton-cg', 'sag', 'saga' and 'lbfgs' solvers. **Note that regularization is applied by default**. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied). The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization with primal formulation, or no regularization. The 'liblinear' solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. The Elastic-Net regularization is only su... |
sklearn.linear_model._logistic.LogisticRegression(5)_C | 1.0 |
sklearn.linear_model._logistic.LogisticRegression(5)_class_weight | null |
sklearn.linear_model._logistic.LogisticRegression(5)_dual | false |
sklearn.linear_model._logistic.LogisticRegression(5)_fit_intercept | true |
sklearn.linear_model._logistic.LogisticRegression(5)_intercept_scaling | 1 |
sklearn.linear_model._logistic.LogisticRegression(5)_l1_ratio | null |
sklearn.linear_model._logistic.LogisticRegression(5)_max_iter | 100 |
sklearn.linear_model._logistic.LogisticRegression(5)_multi_class | "auto" |
` for more details">sklearn.linear_model._logistic.LogisticRegression(5)_n_jobs | null |
sklearn.linear_model._logistic.LogisticRegression(5)_penalty | "l2" |
sklearn.linear_model._logistic.LogisticRegression(5)_random_state | 2990 |
sklearn.linear_model._logistic.LogisticRegression(5)_solver | "lbfgs" |
sklearn.linear_model._logistic.LogisticRegression(5)_tol | 0.0001 |
sklearn.linear_model._logistic.LogisticRegression(5)_verbose | 0 |
sklearn.linear_model._logistic.LogisticRegression(5)_warm_start | false |
0.9661 Per class Cross-validation details (33% Holdout set)
|
0.7908 Per class Cross-validation details (33% Holdout set)
|
0.6772 Cross-validation details (33% Holdout set)
|
0.6959 Cross-validation details (33% Holdout set)
|
0.1256 Cross-validation details (33% Holdout set)
|
0.3857 Cross-validation details (33% Holdout set)
|
0.8204 Cross-validation details (33% Holdout set)
|
206 Per class Cross-validation details (33% Holdout set) |
0.8484 Per class Cross-validation details (33% Holdout set)
|
0.8204 Cross-validation details (33% Holdout set)
|
1.3777 Cross-validation details (33% Holdout set)
|
0.3256 Cross-validation details (33% Holdout set)
|
0.4424 Cross-validation details (33% Holdout set)
|
0.2537 Cross-validation details (33% Holdout set)
|
0.5735 Cross-validation details (33% Holdout set)
|
0.6348 Cross-validation details (33% Holdout set)
|