Run
10559844

Run 10559844

Task 59 (Supervised Classification) iris Uploaded 25-03-2021 by Pieter Gijsbers
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemb le._forest.RandomForestClassifier)(1)Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated search over parameter settings. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters.
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(1)_cv{"oml-python:serialized_object": "cv_object", "value": {"name": "sklearn.model_selection._split.StratifiedKFold", "parameters": {"n_splits": "2", "random_state": "54293", "shuffle": "true"}}}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(1)_error_scoreNaN
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(1)_iid"deprecated"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(1)_n_iter1
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(1)_n_jobsnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(1)_param_distributions{"bootstrap": [true, false], "criterion": ["gini", "entropy"], "max_depth": [3, null], "max_features": [1, 2, 3, 4], "min_samples_leaf": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "min_samples_split": [2, 3, 4, 5, 6, 7, 8, 9, 10]}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(1)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(1)_random_state58523
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(1)_refittrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(1)_return_train_scorefalse
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(1)_scoringnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.ensemble._forest.RandomForestClassifier)(1)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(7)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(7)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(7)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(7)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(7)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(7)_max_features"auto"
sklearn.ensemble._forest.RandomForestClassifier(7)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(7)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(7)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(7)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(7)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(7)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(7)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(7)_n_estimators5
sklearn.ensemble._forest.RandomForestClassifier(7)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(7)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(7)_random_state48090
sklearn.ensemble._forest.RandomForestClassifier(7)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(7)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

18 Evaluation measures

0.9728 ± 0.0349
Per class
Cross-validation details (10-fold Crossvalidation)
0.9466 ± 0.0536
Per class
Cross-validation details (10-fold Crossvalidation)
0.92 ± 0.0789
Cross-validation details (10-fold Crossvalidation)
0.9286 ± 0.0627
Cross-validation details (10-fold Crossvalidation)
0.0359 ± 0.0302
Cross-validation details (10-fold Crossvalidation)
0.4444
Cross-validation details (10-fold Crossvalidation)
0.9467 ± 0.0526
Cross-validation details (10-fold Crossvalidation)
150
Per class
Cross-validation details (10-fold Crossvalidation)
0.9471 ± 0.0458
Per class
Cross-validation details (10-fold Crossvalidation)
0.9467 ± 0.0526
Cross-validation details (10-fold Crossvalidation)
1.585
Cross-validation details (10-fold Crossvalidation)
0.0807 ± 0.068
Cross-validation details (10-fold Crossvalidation)
0.4714
Cross-validation details (10-fold Crossvalidation)
0.1707 ± 0.1077
Cross-validation details (10-fold Crossvalidation)
0.3622 ± 0.2285
Cross-validation details (10-fold Crossvalidation)
0.9467 ± 0.0526
Cross-validation details (10-fold Crossvalidation)