Run
10559843

Run 10559843

Task 59 (Supervised Classification) iris Uploaded 25-03-2021 by Pieter Gijsbers
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(minmaxscaler=sklearn.preprocessing._data.MinMaxSc aler,powertransformer=sklearn.preprocessing._data.PowerTransformer,robustsc aler=sklearn.preprocessing._data.RobustScaler,standardscaler=sklearn.prepro cessing._data.StandardScaler,decisiontreeclassifier=sklearn.tree._classes.D ecisionTreeClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.preprocessing._data.StandardScaler(6)_copytrue
sklearn.preprocessing._data.StandardScaler(6)_with_meantrue
sklearn.preprocessing._data.StandardScaler(6)_with_stdtrue
sklearn.tree._classes.DecisionTreeClassifier(15)_ccp_alpha0.0
sklearn.tree._classes.DecisionTreeClassifier(15)_class_weightnull
sklearn.tree._classes.DecisionTreeClassifier(15)_criterion"gini"
sklearn.tree._classes.DecisionTreeClassifier(15)_max_depthnull
sklearn.tree._classes.DecisionTreeClassifier(15)_max_featuresnull
sklearn.tree._classes.DecisionTreeClassifier(15)_max_leaf_nodesnull
sklearn.tree._classes.DecisionTreeClassifier(15)_min_impurity_decrease0.0
sklearn.tree._classes.DecisionTreeClassifier(15)_min_impurity_splitnull
sklearn.tree._classes.DecisionTreeClassifier(15)_min_samples_leaf1
sklearn.tree._classes.DecisionTreeClassifier(15)_min_samples_split2
sklearn.tree._classes.DecisionTreeClassifier(15)_min_weight_fraction_leaf0.0
sklearn.tree._classes.DecisionTreeClassifier(15)_presort"deprecated"
sklearn.tree._classes.DecisionTreeClassifier(15)_random_state15355
sklearn.tree._classes.DecisionTreeClassifier(15)_splitter"best"
sklearn.pipeline.Pipeline(minmaxscaler=sklearn.preprocessing._data.MinMaxScaler,powertransformer=sklearn.preprocessing._data.PowerTransformer,robustscaler=sklearn.preprocessing._data.RobustScaler,standardscaler=sklearn.preprocessing._data.StandardScaler,decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(minmaxscaler=sklearn.preprocessing._data.MinMaxScaler,powertransformer=sklearn.preprocessing._data.PowerTransformer,robustscaler=sklearn.preprocessing._data.RobustScaler,standardscaler=sklearn.preprocessing._data.StandardScaler,decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "minmaxscaler", "step_name": "minmaxscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "powertransformer", "step_name": "powertransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "robustscaler", "step_name": "robustscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "decisiontreeclassifier", "step_name": "decisiontreeclassifier"}}]
sklearn.pipeline.Pipeline(minmaxscaler=sklearn.preprocessing._data.MinMaxScaler,powertransformer=sklearn.preprocessing._data.PowerTransformer,robustscaler=sklearn.preprocessing._data.RobustScaler,standardscaler=sklearn.preprocessing._data.StandardScaler,decisiontreeclassifier=sklearn.tree._classes.DecisionTreeClassifier)(1)_verbosefalse
sklearn.preprocessing._data.MinMaxScaler(2)_copytrue
sklearn.preprocessing._data.MinMaxScaler(2)_feature_range[0, 1]
sklearn.preprocessing._data.PowerTransformer(1)_copytrue
sklearn.preprocessing._data.PowerTransformer(1)_method"yeo-johnson"
sklearn.preprocessing._data.PowerTransformer(1)_standardizetrue
sklearn.preprocessing._data.RobustScaler(2)_copytrue
sklearn.preprocessing._data.RobustScaler(2)_quantile_range[25.0, 75.0]
sklearn.preprocessing._data.RobustScaler(2)_with_centeringtrue
sklearn.preprocessing._data.RobustScaler(2)_with_scalingtrue

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.95 ± 0.0408
Per class
Cross-validation details (10-fold Crossvalidation)
0.9333 ± 0.056
Per class
Cross-validation details (10-fold Crossvalidation)
0.9 ± 0.0816
Cross-validation details (10-fold Crossvalidation)
0.9087 ± 0.0745
Cross-validation details (10-fold Crossvalidation)
0.0444 ± 0.0363
Cross-validation details (10-fold Crossvalidation)
0.4444
Cross-validation details (10-fold Crossvalidation)
0.9333 ± 0.0544
Cross-validation details (10-fold Crossvalidation)
150
Per class
Cross-validation details (10-fold Crossvalidation)
0.9338 ± 0.0453
Per class
Cross-validation details (10-fold Crossvalidation)
0.9333 ± 0.0544
Cross-validation details (10-fold Crossvalidation)
1.585
Cross-validation details (10-fold Crossvalidation)
0.1 ± 0.0816
Cross-validation details (10-fold Crossvalidation)
0.4714
Cross-validation details (10-fold Crossvalidation)
0.2108 ± 0.1258
Cross-validation details (10-fold Crossvalidation)
0.4472 ± 0.2669
Cross-validation details (10-fold Crossvalidation)
0.9333 ± 0.0544
Cross-validation details (10-fold Crossvalidation)