Run
10559763

Run 10559763

Task 10093 (Supervised Classification) banknote-authentication Uploaded 23-02-2021 by Fabrice Normandin
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.Standar dScaler,xgbclassifier=xgboost.sklearn.XGBClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.preprocessing.data.StandardScaler(41)_copytrue
sklearn.preprocessing.data.StandardScaler(41)_with_meantrue
sklearn.preprocessing.data.StandardScaler(41)_with_stdtrue
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler,xgbclassifier=xgboost.sklearn.XGBClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler,xgbclassifier=xgboost.sklearn.XGBClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "xgbclassifier", "step_name": "xgbclassifier"}}]
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler,xgbclassifier=xgboost.sklearn.XGBClassifier)(1)_verbosefalse
xgboost.sklearn.XGBClassifier(11)_base_scorenull
xgboost.sklearn.XGBClassifier(11)_booster"gblinear"
xgboost.sklearn.XGBClassifier(11)_colsample_bylevel0.10236229212682288
xgboost.sklearn.XGBClassifier(11)_colsample_bynodenull
xgboost.sklearn.XGBClassifier(11)_colsample_bytree0.9133756966924026
xgboost.sklearn.XGBClassifier(11)_gammanull
xgboost.sklearn.XGBClassifier(11)_gpu_idnull
xgboost.sklearn.XGBClassifier(11)_importance_type"gain"
xgboost.sklearn.XGBClassifier(11)_interaction_constraintsnull
xgboost.sklearn.XGBClassifier(11)_learning_rate0.7046906880432579
xgboost.sklearn.XGBClassifier(11)_max_delta_stepnull
xgboost.sklearn.XGBClassifier(11)_max_depth14
xgboost.sklearn.XGBClassifier(11)_min_child_weight93.9943569048485
xgboost.sklearn.XGBClassifier(11)_missingNaN
xgboost.sklearn.XGBClassifier(11)_monotone_constraintsnull
xgboost.sklearn.XGBClassifier(11)_n_estimators100
xgboost.sklearn.XGBClassifier(11)_n_jobsnull
xgboost.sklearn.XGBClassifier(11)_num_parallel_treenull
xgboost.sklearn.XGBClassifier(11)_objective"binary:logistic"
xgboost.sklearn.XGBClassifier(11)_random_state33860
xgboost.sklearn.XGBClassifier(11)_reg_alpha827.8481363932908
xgboost.sklearn.XGBClassifier(11)_reg_lambda769.6869249686737
xgboost.sklearn.XGBClassifier(11)_scale_pos_weightnull
xgboost.sklearn.XGBClassifier(11)_subsample0.8189293035021832
xgboost.sklearn.XGBClassifier(11)_tree_methodnull
xgboost.sklearn.XGBClassifier(11)_use_label_encodertrue
xgboost.sklearn.XGBClassifier(11)_validate_parametersnull
xgboost.sklearn.XGBClassifier(11)_verbositynull

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.499
Per class
Cross-validation details (10-fold Crossvalidation)
0 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.4939 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.4939 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.5554 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
1372
Per class
Cross-validation details (10-fold Crossvalidation)
0.5554 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.9911 ± 0.0004
Cross-validation details (10-fold Crossvalidation)
1 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4969 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.4969 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
1 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)