Issue | #Downvotes for this reason | By |
---|
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.Standar dScaler,svc=sklearn.svm.classes.SVC)(6) | Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting to None. |
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(6)_memory | null |
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler,svc=sklearn.svm.classes.SVC)(6)_steps | [{"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "svc", "step_name": "svc"}}] |
sklearn.preprocessing.data.StandardScaler(40)_copy | true |
sklearn.preprocessing.data.StandardScaler(40)_with_mean | true |
sklearn.preprocessing.data.StandardScaler(40)_with_std | true |
sklearn.svm.classes.SVC(42)_C | 500 |
sklearn.svm.classes.SVC(42)_cache_size | 200 |
sklearn.svm.classes.SVC(42)_class_weight | null |
sklearn.svm.classes.SVC(42)_coef0 | 0.0 |
sklearn.svm.classes.SVC(42)_decision_function_shape | "ovr" |
sklearn.svm.classes.SVC(42)_degree | 3 |
sklearn.svm.classes.SVC(42)_gamma | 500 |
sklearn.svm.classes.SVC(42)_kernel | "rbf" |
sklearn.svm.classes.SVC(42)_max_iter | -1 |
sklearn.svm.classes.SVC(42)_probability | false |
sklearn.svm.classes.SVC(42)_random_state | 34958 |
sklearn.svm.classes.SVC(42)_shrinking | true |
sklearn.svm.classes.SVC(42)_tol | 0.001 |
sklearn.svm.classes.SVC(42)_verbose | false |
0.5249 ± 0.0374 Per class Cross-validation details (10-fold Crossvalidation)
|
0.6869 ± 0.0346 Per class Cross-validation details (10-fold Crossvalidation)
|
0.0675 ± 0.0985 Cross-validation details (10-fold Crossvalidation)
|
0.223 ± 0.0768 Cross-validation details (10-fold Crossvalidation)
|
0.25 ± 0.0245 Cross-validation details (10-fold Crossvalidation)
|
0.363 ± 0.0023 Cross-validation details (10-fold Crossvalidation)
|
0.75 ± 0.0245 Cross-validation details (10-fold Crossvalidation)
|
748 Per class Cross-validation details (10-fold Crossvalidation) |
0.6821 ± 0.0668 Per class Cross-validation details (10-fold Crossvalidation)
|
0.75 ± 0.0245 Cross-validation details (10-fold Crossvalidation)
|
0.7916 ± 0.0072 Cross-validation details (10-fold Crossvalidation)
|
0.6886 ± 0.0678 Cross-validation details (10-fold Crossvalidation)
|
0.4258 ± 0.0027 Cross-validation details (10-fold Crossvalidation)
|
0.5 ± 0.0246 Cross-validation details (10-fold Crossvalidation)
|
1.1742 ± 0.0584 Cross-validation details (10-fold Crossvalidation)
|
0.5249 ± 0.0374 Cross-validation details (10-fold Crossvalidation)
|