Run
10559708

Run 10559708

Task 3 (Supervised Classification) kr-vs-kp Uploaded 21-10-2020 by Mohit Aggarwal
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear _model._logistic.LogisticRegression)(1)Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated search over parameter settings. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters.
sklearn.linear_model._logistic.LogisticRegression(4)_C1.0
sklearn.linear_model._logistic.LogisticRegression(4)_class_weightnull
sklearn.linear_model._logistic.LogisticRegression(4)_dualfalse
sklearn.linear_model._logistic.LogisticRegression(4)_fit_intercepttrue
sklearn.linear_model._logistic.LogisticRegression(4)_intercept_scaling1
sklearn.linear_model._logistic.LogisticRegression(4)_l1_rationull
sklearn.linear_model._logistic.LogisticRegression(4)_max_iter100
sklearn.linear_model._logistic.LogisticRegression(4)_multi_class"auto"
sklearn.linear_model._logistic.LogisticRegression(4)_n_jobsnull
sklearn.linear_model._logistic.LogisticRegression(4)_penalty"l2"
sklearn.linear_model._logistic.LogisticRegression(4)_random_state41925
sklearn.linear_model._logistic.LogisticRegression(4)_solver"lbfgs"
sklearn.linear_model._logistic.LogisticRegression(4)_tol0.0001
sklearn.linear_model._logistic.LogisticRegression(4)_verbose0
sklearn.linear_model._logistic.LogisticRegression(4)_warm_startfalse
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model._logistic.LogisticRegression)(1)_cvnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model._logistic.LogisticRegression)(1)_error_scoreNaN
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model._logistic.LogisticRegression)(1)_iid"deprecated"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model._logistic.LogisticRegression)(1)_n_iter10
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model._logistic.LogisticRegression)(1)_n_jobs-1
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model._logistic.LogisticRegression)(1)_param_distributions{"C": {"oml-python:serialized_object": "rv_frozen", "value": {"dist": "scipy.stats._continuous_distns.uniform_gen", "a": 0.0, "b": 1.0, "args": [1, 100], "kwds": {}}}, "penalty": ["l1", "l2", "elasticnet"]}
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model._logistic.LogisticRegression)(1)_pre_dispatch"2*n_jobs"
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model._logistic.LogisticRegression)(1)_random_state0
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model._logistic.LogisticRegression)(1)_refittrue
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model._logistic.LogisticRegression)(1)_return_train_scorefalse
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model._logistic.LogisticRegression)(1)_scoringnull
sklearn.model_selection._search.RandomizedSearchCV(estimator=sklearn.linear_model._logistic.LogisticRegression)(1)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

arff
Trace

ARFF file with the trace of all hyperparameter settings tried during optimization, and their performance.

18 Evaluation measures

0.9953 ± 0.0028
Per class
Cross-validation details (10-fold Crossvalidation)
0.9712 ± 0.0113
Per class
Cross-validation details (10-fold Crossvalidation)
0.9423 ± 0.0227
Cross-validation details (10-fold Crossvalidation)
0.9107 ± 0.0204
Cross-validation details (10-fold Crossvalidation)
0.0482 ± 0.01
Cross-validation details (10-fold Crossvalidation)
0.499 ± 0
Cross-validation details (10-fold Crossvalidation)
0.9712 ± 0.0113
Cross-validation details (10-fold Crossvalidation)
3196
Per class
Cross-validation details (10-fold Crossvalidation)
0.9713 ± 0.0112
Per class
Cross-validation details (10-fold Crossvalidation)
0.9712 ± 0.0113
Cross-validation details (10-fold Crossvalidation)
0.9986 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.0965 ± 0.02
Cross-validation details (10-fold Crossvalidation)
0.4995 ± 0
Cross-validation details (10-fold Crossvalidation)
0.1548 ± 0.0257
Cross-validation details (10-fold Crossvalidation)
0.31 ± 0.0514
Cross-validation details (10-fold Crossvalidation)
0.9713 ± 0.0113
Cross-validation details (10-fold Crossvalidation)