Run
10559693

Run 10559693

Task 317602 (Supervised Classification) kr-vs-kp Uploaded 01-10-2020 by ray wright
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier) (1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.impute._base.SimpleImputer(16)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(16)_copytrue
sklearn.impute._base.SimpleImputer(16)_fill_valuenull
sklearn.impute._base.SimpleImputer(16)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(16)_strategy"mean"
sklearn.impute._base.SimpleImputer(16)_verbose0
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "gradientboostingclassifier", "step_name": "gradientboostingclassifier"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,gradientboostingclassifier=sklearn.ensemble._gb.GradientBoostingClassifier)(1)_verbosefalse
sklearn.ensemble._gb.GradientBoostingClassifier(2)_ccp_alpha0.0
sklearn.ensemble._gb.GradientBoostingClassifier(2)_criterion"friedman_mse"
sklearn.ensemble._gb.GradientBoostingClassifier(2)_initnull
sklearn.ensemble._gb.GradientBoostingClassifier(2)_learning_rate0.75
sklearn.ensemble._gb.GradientBoostingClassifier(2)_loss"deviance"
sklearn.ensemble._gb.GradientBoostingClassifier(2)_max_depth3
sklearn.ensemble._gb.GradientBoostingClassifier(2)_max_featuresnull
sklearn.ensemble._gb.GradientBoostingClassifier(2)_max_leaf_nodesnull
sklearn.ensemble._gb.GradientBoostingClassifier(2)_min_impurity_decrease0.0
sklearn.ensemble._gb.GradientBoostingClassifier(2)_min_impurity_splitnull
sklearn.ensemble._gb.GradientBoostingClassifier(2)_min_samples_leaf1
sklearn.ensemble._gb.GradientBoostingClassifier(2)_min_samples_split2
sklearn.ensemble._gb.GradientBoostingClassifier(2)_min_weight_fraction_leaf0.0
sklearn.ensemble._gb.GradientBoostingClassifier(2)_n_estimators100
sklearn.ensemble._gb.GradientBoostingClassifier(2)_n_iter_no_changenull
sklearn.ensemble._gb.GradientBoostingClassifier(2)_presort"deprecated"
sklearn.ensemble._gb.GradientBoostingClassifier(2)_random_state46405
sklearn.ensemble._gb.GradientBoostingClassifier(2)_subsample1.0
sklearn.ensemble._gb.GradientBoostingClassifier(2)_tol0.0001
sklearn.ensemble._gb.GradientBoostingClassifier(2)_validation_fraction0.1
sklearn.ensemble._gb.GradientBoostingClassifier(2)_verbose0
sklearn.ensemble._gb.GradientBoostingClassifier(2)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9991
Per class
Cross-validation details (33% Holdout set)
0.9905
Per class
Cross-validation details (33% Holdout set)
0.9809
Cross-validation details (33% Holdout set)
0.9756
Cross-validation details (33% Holdout set)
0.0126
Cross-validation details (33% Holdout set)
0.4984
Cross-validation details (33% Holdout set)
0.9905
Cross-validation details (33% Holdout set)
1054
Per class
Cross-validation details (33% Holdout set)
0.9905
Per class
Cross-validation details (33% Holdout set)
0.9905
Cross-validation details (33% Holdout set)
0.9969
Cross-validation details (33% Holdout set)
0.0252
Cross-validation details (33% Holdout set)
0.4989
Cross-validation details (33% Holdout set)
0.0887
Cross-validation details (33% Holdout set)
0.1777
Cross-validation details (33% Holdout set)
0.9902
Cross-validation details (33% Holdout set)