Run
10559673

Run 10559673

Task 119 (Learning Curve) zoo Uploaded 25-09-2020 by Marcos de Paula Bueno
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.ensemble._forest.RandomForestClassifier(5)A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is controlled with the `max_samples` parameter if `bootstrap=True` (default), otherwise the whole dataset is used to build each tree.
sklearn.ensemble._forest.RandomForestClassifier(5)_bootstraptrue
sklearn.ensemble._forest.RandomForestClassifier(5)_ccp_alpha0.0
sklearn.ensemble._forest.RandomForestClassifier(5)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(5)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(5)_max_depthnull
sklearn.ensemble._forest.RandomForestClassifier(5)_max_features"auto"
sklearn.ensemble._forest.RandomForestClassifier(5)_max_leaf_nodesnull
sklearn.ensemble._forest.RandomForestClassifier(5)_max_samplesnull
sklearn.ensemble._forest.RandomForestClassifier(5)_min_impurity_decrease0.0
sklearn.ensemble._forest.RandomForestClassifier(5)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(5)_min_samples_leaf1
sklearn.ensemble._forest.RandomForestClassifier(5)_min_samples_split2
sklearn.ensemble._forest.RandomForestClassifier(5)_min_weight_fraction_leaf0.0
sklearn.ensemble._forest.RandomForestClassifier(5)_n_estimators100
sklearn.ensemble._forest.RandomForestClassifier(5)_n_jobsnull
sklearn.ensemble._forest.RandomForestClassifier(5)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(5)_random_state870
sklearn.ensemble._forest.RandomForestClassifier(5)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(5)_warm_startfalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9992 ± 0.0032
Per class
0.956
Per class
0.9464 ± 0.0794
0.9261 ± 0.0519
0.0241 ± 0.0131
0.2188 ± 0.0049
0.9594 ± 0.0607
1010
Per class
0.9577
Per class
0.9594 ± 0.0607
2.3926 ± 0.137
0.1102 ± 0.0585
0.3294 ± 0.0075
0.0857 ± 0.0396
0.2602 ± 0.118
0.8929 ± 0.1355