Run
10557609

Run 10557609

Task 167140 (Supervised Classification) dna Uploaded 09-08-2020 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,logisticregress ion=sklearn.linear_model.logistic.LogisticRegression)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.impute._base.SimpleImputer(11)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(11)_copytrue
sklearn.impute._base.SimpleImputer(11)_fill_valuenull
sklearn.impute._base.SimpleImputer(11)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(11)_strategy"most_frequent"
sklearn.impute._base.SimpleImputer(11)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(16)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(16)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(16)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_sparsetrue
sklearn.linear_model.logistic.LogisticRegression(33)_C10
sklearn.linear_model.logistic.LogisticRegression(33)_class_weightnull
sklearn.linear_model.logistic.LogisticRegression(33)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(33)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(33)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(33)_l1_rationull
sklearn.linear_model.logistic.LogisticRegression(33)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(33)_multi_class"warn"
sklearn.linear_model.logistic.LogisticRegression(33)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(33)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(33)_random_state1
sklearn.linear_model.logistic.LogisticRegression(33)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(33)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(33)_verbose0
sklearn.linear_model.logistic.LogisticRegression(33)_warm_startfalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,logisticregression=sklearn.linear_model.logistic.LogisticRegression)(2)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,logisticregression=sklearn.linear_model.logistic.LogisticRegression)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "logisticregression", "step_name": "logisticregression"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder,logisticregression=sklearn.linear_model.logistic.LogisticRegression)(2)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9888 ± 0.0035
Per class
Cross-validation details (10-fold Crossvalidation)
0.9493 ± 0.0125
Per class
Cross-validation details (10-fold Crossvalidation)
0.9176 ± 0.0204
Cross-validation details (10-fold Crossvalidation)
0.8914 ± 0.0141
Cross-validation details (10-fold Crossvalidation)
0.0529 ± 0.0058
Cross-validation details (10-fold Crossvalidation)
0.41 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.9492 ± 0.0125
Cross-validation details (10-fold Crossvalidation)
3186
Per class
Cross-validation details (10-fold Crossvalidation)
0.9496 ± 0.0124
Per class
Cross-validation details (10-fold Crossvalidation)
0.9492 ± 0.0125
Cross-validation details (10-fold Crossvalidation)
1.4798 ± 0.0014
Cross-validation details (10-fold Crossvalidation)
0.1291 ± 0.0143
Cross-validation details (10-fold Crossvalidation)
0.4527 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.1755 ± 0.0147
Cross-validation details (10-fold Crossvalidation)
0.3876 ± 0.0325
Cross-validation details (10-fold Crossvalidation)
0.9449 ± 0.0153
Cross-validation details (10-fold Crossvalidation)