Run
10554982

Run 10554982

Task 14965 (Supervised Classification) bank-marketing Uploaded 08-08-2020 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num =sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.Standa rdScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing ._encoders.OneHotEncoder)),logisticregression=sklearn.linear_model.logistic .LogisticRegression)(2)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.preprocessing.data.StandardScaler(35)_copytrue
sklearn.preprocessing.data.StandardScaler(35)_with_meantrue
sklearn.preprocessing.data.StandardScaler(35)_with_stdtrue
sklearn.impute._base.SimpleImputer(11)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(11)_copytrue
sklearn.impute._base.SimpleImputer(11)_fill_valuenull
sklearn.impute._base.SimpleImputer(11)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(11)_strategy"most_frequent"
sklearn.impute._base.SimpleImputer(11)_verbose0
sklearn.preprocessing._encoders.OneHotEncoder(16)_categorical_featuresnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_categoriesnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_dropnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_dtype{"oml-python:serialized_object": "type", "value": "np.float64"}
sklearn.preprocessing._encoders.OneHotEncoder(16)_handle_unknown"ignore"
sklearn.preprocessing._encoders.OneHotEncoder(16)_n_valuesnull
sklearn.preprocessing._encoders.OneHotEncoder(16)_sparsetrue
sklearn.linear_model.logistic.LogisticRegression(33)_C0.01
sklearn.linear_model.logistic.LogisticRegression(33)_class_weightnull
sklearn.linear_model.logistic.LogisticRegression(33)_dualfalse
sklearn.linear_model.logistic.LogisticRegression(33)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(33)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(33)_l1_rationull
sklearn.linear_model.logistic.LogisticRegression(33)_max_iter10000
sklearn.linear_model.logistic.LogisticRegression(33)_multi_class"warn"
sklearn.linear_model.logistic.LogisticRegression(33)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(33)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(33)_random_state1
sklearn.linear_model.logistic.LogisticRegression(33)_solver"lbfgs"
sklearn.linear_model.logistic.LogisticRegression(33)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(33)_verbose0
sklearn.linear_model.logistic.LogisticRegression(33)_warm_startfalse
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(6)_n_jobsnull
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(6)_remainder"drop"
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(6)_sparse_threshold0.3
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(6)_transformer_weightsnull
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(6)_transformers[{"oml-python:serialized_object": "component_reference", "value": {"key": "num", "step_name": "num", "argument_1": [true, false, false, false, false, true, false, false, false, true, false, true, true, true, true, false]}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "cat", "step_name": "cat", "argument_1": [false, true, true, true, true, false, true, true, true, false, true, false, false, false, false, true]}}]
sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder))(6)_verbosefalse
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler)(6)_memorynull
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler)(6)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}]
sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler)(6)_verbosefalse
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(7)_memorynull
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(7)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "onehotencoder", "step_name": "onehotencoder"}}]
sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)(7)_verbosefalse
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),logisticregression=sklearn.linear_model.logistic.LogisticRegression)(2)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),logisticregression=sklearn.linear_model.logistic.LogisticRegression)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "columntransformer", "step_name": "columntransformer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "logisticregression", "step_name": "logisticregression"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,columntransformer=sklearn.compose._column_transformer.ColumnTransformer(num=sklearn.pipeline.Pipeline(standardscaler=sklearn.preprocessing.data.StandardScaler),cat=sklearn.pipeline.Pipeline(onehotencoder=sklearn.preprocessing._encoders.OneHotEncoder)),logisticregression=sklearn.linear_model.logistic.LogisticRegression)(2)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.9055 ± 0.0092
Per class
Cross-validation details (10-fold Crossvalidation)
0.8822 ± 0.0047
Per class
Cross-validation details (10-fold Crossvalidation)
0.3614 ± 0.0282
Cross-validation details (10-fold Crossvalidation)
0.1779 ± 0.0204
Cross-validation details (10-fold Crossvalidation)
0.1467 ± 0.0024
Cross-validation details (10-fold Crossvalidation)
0.2066 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.8994 ± 0.0033
Cross-validation details (10-fold Crossvalidation)
45211
Per class
Cross-validation details (10-fold Crossvalidation)
0.8829 ± 0.0053
Per class
Cross-validation details (10-fold Crossvalidation)
0.8994 ± 0.0033
Cross-validation details (10-fold Crossvalidation)
0.5206 ± 0.0002
Cross-validation details (10-fold Crossvalidation)
0.7099 ± 0.0117
Cross-validation details (10-fold Crossvalidation)
0.3214 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.2689 ± 0.0046
Cross-validation details (10-fold Crossvalidation)
0.8366 ± 0.0142
Cross-validation details (10-fold Crossvalidation)
0.6377 ± 0.0125
Cross-validation details (10-fold Crossvalidation)