Run
10506174

Run 10506174

Task 125922 (Supervised Classification) texture Uploaded 05-08-2020 by Heinrich Peters
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer, standardscaler=sklearn.preprocessing.data.StandardScaler,logisticregression =sklearn.linear_model.logistic.LogisticRegression)(2)Automatically created scikit-learn flow.
sklearn.impute._base.SimpleImputer(1)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(1)_copytrue
sklearn.impute._base.SimpleImputer(1)_fill_valuenull
sklearn.impute._base.SimpleImputer(1)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(1)_strategy"median"
sklearn.impute._base.SimpleImputer(1)_verbose0
sklearn.linear_model.logistic.LogisticRegression(26)_C15.0
sklearn.linear_model.logistic.LogisticRegression(26)_class_weightnull
sklearn.linear_model.logistic.LogisticRegression(26)_dualtrue
sklearn.linear_model.logistic.LogisticRegression(26)_fit_intercepttrue
sklearn.linear_model.logistic.LogisticRegression(26)_intercept_scaling1
sklearn.linear_model.logistic.LogisticRegression(26)_l1_rationull
sklearn.linear_model.logistic.LogisticRegression(26)_max_iter100
sklearn.linear_model.logistic.LogisticRegression(26)_multi_class"warn"
sklearn.linear_model.logistic.LogisticRegression(26)_n_jobsnull
sklearn.linear_model.logistic.LogisticRegression(26)_penalty"l2"
sklearn.linear_model.logistic.LogisticRegression(26)_random_state1
sklearn.linear_model.logistic.LogisticRegression(26)_solver"liblinear"
sklearn.linear_model.logistic.LogisticRegression(26)_tol0.0001
sklearn.linear_model.logistic.LogisticRegression(26)_verbose0
sklearn.linear_model.logistic.LogisticRegression(26)_warm_startfalse
sklearn.preprocessing.data.StandardScaler(29)_copytrue
sklearn.preprocessing.data.StandardScaler(29)_with_meantrue
sklearn.preprocessing.data.StandardScaler(29)_with_stdtrue
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,logisticregression=sklearn.linear_model.logistic.LogisticRegression)(2)_memorynull
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,logisticregression=sklearn.linear_model.logistic.LogisticRegression)(2)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "simpleimputer", "step_name": "simpleimputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "standardscaler", "step_name": "standardscaler"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "logisticregression", "step_name": "logisticregression"}}]
sklearn.pipeline.Pipeline(simpleimputer=sklearn.impute._base.SimpleImputer,standardscaler=sklearn.preprocessing.data.StandardScaler,logisticregression=sklearn.linear_model.logistic.LogisticRegression)(2)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

1 ± 0.0001
Per class
Cross-validation details (10-fold Crossvalidation)
0.9967 ± 0.0032
Per class
Cross-validation details (10-fold Crossvalidation)
0.9964 ± 0.0035
Cross-validation details (10-fold Crossvalidation)
0.9858 ± 0.0033
Cross-validation details (10-fold Crossvalidation)
0.0052 ± 0.0008
Cross-validation details (10-fold Crossvalidation)
0.1653
Cross-validation details (10-fold Crossvalidation)
0.9967 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
5500
Per class
Cross-validation details (10-fold Crossvalidation)
0.9967 ± 0.0031
Per class
Cross-validation details (10-fold Crossvalidation)
0.9967 ± 0.0032
Cross-validation details (10-fold Crossvalidation)
3.4594
Cross-validation details (10-fold Crossvalidation)
0.0315 ± 0.0049
Cross-validation details (10-fold Crossvalidation)
0.2875
Cross-validation details (10-fold Crossvalidation)
0.0334 ± 0.0076
Cross-validation details (10-fold Crossvalidation)
0.1161 ± 0.0264
Cross-validation details (10-fold Crossvalidation)
0.9967 ± 0.0032
Cross-validation details (10-fold Crossvalidation)