Run
10464881

Run 10464881

Task 233176 (Supervised Classification) Test_vectors_trans_posneg Uploaded 22-06-2020 by Richard Cook
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estima tor=sklearn.tree.tree.DecisionTreeClassifier)(6)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.tree.tree.DecisionTreeClassifier(58)_class_weightnull
sklearn.tree.tree.DecisionTreeClassifier(58)_criterion"gini"
sklearn.tree.tree.DecisionTreeClassifier(58)_max_depthnull
sklearn.tree.tree.DecisionTreeClassifier(58)_max_featuresnull
sklearn.tree.tree.DecisionTreeClassifier(58)_max_leaf_nodesnull
sklearn.tree.tree.DecisionTreeClassifier(58)_min_impurity_decrease0.0
sklearn.tree.tree.DecisionTreeClassifier(58)_min_impurity_splitnull
sklearn.tree.tree.DecisionTreeClassifier(58)_min_samples_leaf1
sklearn.tree.tree.DecisionTreeClassifier(58)_min_samples_split2
sklearn.tree.tree.DecisionTreeClassifier(58)_min_weight_fraction_leaf0.0
sklearn.tree.tree.DecisionTreeClassifier(58)_presortfalse
sklearn.tree.tree.DecisionTreeClassifier(58)_random_state24418
sklearn.tree.tree.DecisionTreeClassifier(58)_splitter"best"
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.tree.tree.DecisionTreeClassifier)(6)_memorynull
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.tree.tree.DecisionTreeClassifier)(6)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "imputer", "step_name": "imputer"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "estimator", "step_name": "estimator"}}]
sklearn.pipeline.Pipeline(imputer=sklearn.impute._base.SimpleImputer,estimator=sklearn.tree.tree.DecisionTreeClassifier)(6)_verbosefalse
sklearn.impute._base.SimpleImputer(10)_add_indicatorfalse
sklearn.impute._base.SimpleImputer(10)_copytrue
sklearn.impute._base.SimpleImputer(10)_fill_valuenull
sklearn.impute._base.SimpleImputer(10)_missing_valuesNaN
sklearn.impute._base.SimpleImputer(10)_strategy"mean"
sklearn.impute._base.SimpleImputer(10)_verbose0

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.7314 ± 0.0423
Per class
Cross-validation details (10-fold Crossvalidation)
0.8999 ± 0.0229
Per class
Cross-validation details (10-fold Crossvalidation)
0.5218 ± 0.1028
Cross-validation details (10-fold Crossvalidation)
0.4569 ± 0.1502
Cross-validation details (10-fold Crossvalidation)
0.0938 ± 0.0252
Cross-validation details (10-fold Crossvalidation)
0.2215 ± 0.0021
Cross-validation details (10-fold Crossvalidation)
0.9062 ± 0.0252
Cross-validation details (10-fold Crossvalidation)
1556
Per class
Cross-validation details (10-fold Crossvalidation)
0.8977 ± 0.0256
Per class
Cross-validation details (10-fold Crossvalidation)
0.9062 ± 0.0252
Cross-validation details (10-fold Crossvalidation)
0.5481 ± 0.0077
Cross-validation details (10-fold Crossvalidation)
0.4236 ± 0.1159
Cross-validation details (10-fold Crossvalidation)
0.3325 ± 0.0031
Cross-validation details (10-fold Crossvalidation)
0.3063 ± 0.0397
Cross-validation details (10-fold Crossvalidation)
0.9212 ± 0.1237
Cross-validation details (10-fold Crossvalidation)
0.7314 ± 0.0423
Cross-validation details (10-fold Crossvalidation)