Run
10464745

Run 10464745

Task 9983 (Supervised Classification) eeg-eye-state Uploaded 22-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_sele ction.SelectPercentile,step_1=sklearn.discriminant_analysis.LinearDiscrimin antAnalysis)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components353
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priorsnull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkagenull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver"svd"
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariancefalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol9.608152786113614e-07
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.SelectPercentile,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.SelectPercentile,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.feature_selection._univariate_selection.SelectPercentile,step_1=sklearn.discriminant_analysis.LinearDiscriminantAnalysis)(1)_verbosefalse
sklearn.feature_selection._univariate_selection.SelectPercentile(1)_percentile28.13678768024938
sklearn.feature_selection._univariate_selection.SelectPercentile(1)_score_func{"oml-python:serialized_object": "function", "value": "sklearn.feature_selection._univariate_selection.chi2"}

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5426 ± 0.0402
Per class
Cross-validation details (10-fold Crossvalidation)
0.5123 ± 0.0184
Per class
Cross-validation details (10-fold Crossvalidation)
0.1119 ± 0.0241
Cross-validation details (10-fold Crossvalidation)
0.013 ± 0.0082
Cross-validation details (10-fold Crossvalidation)
0.4899 ± 0.0033
Cross-validation details (10-fold Crossvalidation)
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5922 ± 0.0113
Cross-validation details (10-fold Crossvalidation)
14980
Per class
Cross-validation details (10-fold Crossvalidation)
0.6346 ± 0.0363
Per class
Cross-validation details (10-fold Crossvalidation)
0.5922 ± 0.0113
Cross-validation details (10-fold Crossvalidation)
0.9924 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.9902 ± 0.0066
Cross-validation details (10-fold Crossvalidation)
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4947 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.9945 ± 0.0037
Cross-validation details (10-fold Crossvalidation)
0.5519 ± 0.0113
Cross-validation details (10-fold Crossvalidation)