Run
10464740

Run 10464740

Task 9983 (Supervised Classification) eeg-eye-state Uploaded 22-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBin sDiscretizer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier )(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha0.00011346926921978054
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon40.16143876091676
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.7429790080331962
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_interceptfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.5354080832601723
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"constant"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"huber"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter787
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change79
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l1"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.9099260650829449
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.7981797280202555
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.preprocessing._discretization.KBinsDiscretizer(1)_encode"onehot"
sklearn.preprocessing._discretization.KBinsDiscretizer(1)_n_bins21
sklearn.preprocessing._discretization.KBinsDiscretizer(1)_strategy"kmeans"
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBinsDiscretizer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBinsDiscretizer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBinsDiscretizer,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5411 ± 0.0399
Per class
Cross-validation details (10-fold Crossvalidation)
0.5313 ± 0.1237
Per class
Cross-validation details (10-fold Crossvalidation)
0.0801 ± 0.0806
Cross-validation details (10-fold Crossvalidation)
0.0514 ± 0.131
Cross-validation details (10-fold Crossvalidation)
0.4672 ± 0.0645
Cross-validation details (10-fold Crossvalidation)
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5328 ± 0.0645
Cross-validation details (10-fold Crossvalidation)
14980
Per class
Cross-validation details (10-fold Crossvalidation)
0.5475 ± 0.0586
Per class
Cross-validation details (10-fold Crossvalidation)
0.5328 ± 0.0645
Cross-validation details (10-fold Crossvalidation)
0.9924 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.9442 ± 0.1304
Cross-validation details (10-fold Crossvalidation)
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
0.6835 ± 0.0471
Cross-validation details (10-fold Crossvalidation)
1.3742 ± 0.0947
Cross-validation details (10-fold Crossvalidation)
0.5411 ± 0.0399
Cross-validation details (10-fold Crossvalidation)