Run
10464658

Run 10464658

Task 9983 (Supervised Classification) eeg-eye-state Uploaded 22-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(esti mator=sklearn.discriminant_analysis.LinearDiscriminantAnalysis),step_1=skle arn.linear_model._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha3.589927663348557e-05
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon7.8903152806089745
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.4364572196333119
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.7386344442893782
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"adaptive"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"hinge"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter192
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change90
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"elasticnet"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.9287861908503593
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.06554567108710094
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.4579982455097301
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_n_components53
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_priorsnull
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_shrinkage0.698276826252297
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_solver"lsqr"
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_store_covariancefalse
sklearn.discriminant_analysis.LinearDiscriminantAnalysis(4)_tol3.449314702713291e-05
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.discriminant_analysis.LinearDiscriminantAnalysis),step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.discriminant_analysis.LinearDiscriminantAnalysis),step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.discriminant_analysis.LinearDiscriminantAnalysis),step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.536 ± 0.0138
Per class
Cross-validation details (10-fold Crossvalidation)
0.3987 ± 0.0369
Per class
Cross-validation details (10-fold Crossvalidation)
0.0657 ± 0.0255
Cross-validation details (10-fold Crossvalidation)
-0.0279 ± 0.0335
Cross-validation details (10-fold Crossvalidation)
0.5062 ± 0.0165
Cross-validation details (10-fold Crossvalidation)
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4938 ± 0.0165
Cross-validation details (10-fold Crossvalidation)
14980
Per class
Cross-validation details (10-fold Crossvalidation)
0.6208 ± 0.0253
Per class
Cross-validation details (10-fold Crossvalidation)
0.4938 ± 0.0165
Cross-validation details (10-fold Crossvalidation)
0.9924 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
1.0231 ± 0.0333
Cross-validation details (10-fold Crossvalidation)
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
0.7115 ± 0.0116
Cross-validation details (10-fold Crossvalidation)
1.4305 ± 0.0233
Cross-validation details (10-fold Crossvalidation)
0.536 ± 0.0138
Cross-validation details (10-fold Crossvalidation)