Run
10464290

Run 10464290

Task 9983 (Supervised Classification) eeg-eye-state Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.cluster._agglomerative.FeatureAggl omeration,step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting .HistGradientBoostingClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_l2_regularization0.0009288545272691076
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_learning_rate0.0042277154532706085
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_loss"auto"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_bins46
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_depth6
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_iter990
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_max_leaf_nodes5998
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_min_samples_leaf904
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_n_iter_no_change57
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_random_state42
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_scoring"roc_auc_ovo"
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_tol0.18176074641423937
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_validation_fraction0.21768135598986293
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_verbose0
sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier(7)_warm_startfalse
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_affinity"precomputed"
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_compute_full_treefalse
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_connectivitynull
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_distance_thresholdnull
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_linkage"complete"
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_memorynull
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_n_clusters9
sklearn.cluster._agglomerative.FeatureAgglomeration(1)_pooling_func{"oml-python:serialized_object": "function", "value": "numpy.median"}
sklearn.pipeline.Pipeline(step_0=sklearn.cluster._agglomerative.FeatureAgglomeration,step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.cluster._agglomerative.FeatureAgglomeration,step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.cluster._agglomerative.FeatureAgglomeration,step_1=sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.711 ± 0.0176
Per class
Cross-validation details (10-fold Crossvalidation)
0.4328 ± 0.0297
Per class
Cross-validation details (10-fold Crossvalidation)
0.0345 ± 0.0294
Cross-validation details (10-fold Crossvalidation)
0.0343 ± 0.0025
Cross-validation details (10-fold Crossvalidation)
0.482 ± 0.0009
Cross-validation details (10-fold Crossvalidation)
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5638 ± 0.0108
Cross-validation details (10-fold Crossvalidation)
14980
Per class
Cross-validation details (10-fold Crossvalidation)
0.6272 ± 0.0488
Per class
Cross-validation details (10-fold Crossvalidation)
0.5638 ± 0.0108
Cross-validation details (10-fold Crossvalidation)
0.9924 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.9742 ± 0.0018
Cross-validation details (10-fold Crossvalidation)
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4856 ± 0.0009
Cross-validation details (10-fold Crossvalidation)
0.9763 ± 0.0017
Cross-validation details (10-fold Crossvalidation)
0.5158 ± 0.0135
Cross-validation details (10-fold Crossvalidation)