Run
10464283

Run 10464283

Task 9983 (Supervised Classification) eeg-eye-state Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(esti mator=sklearn.linear_model._stochastic_gradient.SGDClassifier),step_1=sklea rn.ensemble._weight_boosting.AdaBoostClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_algorithm"SAMME.R"
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_base_estimatornull
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_learning_rate0.0035366783898578913
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_n_estimators90
sklearn.ensemble._weight_boosting.AdaBoostClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha3.92907802226669e-06
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingfalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon4.600104155229397
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.455761414810317
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.5079542499585775
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"constant"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"perceptron"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter101
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change92
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l2"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.8086833842290136
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shufflefalse
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.645070249786853
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.linear_model._stochastic_gradient.SGDClassifier),step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.linear_model._stochastic_gradient.SGDClassifier),step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=automl.util.sklearn.StackingEstimator(estimator=sklearn.linear_model._stochastic_gradient.SGDClassifier),step_1=sklearn.ensemble._weight_boosting.AdaBoostClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6736 ± 0.0146
Per class
Cross-validation details (10-fold Crossvalidation)
0.5498 ± 0.0247
Per class
Cross-validation details (10-fold Crossvalidation)
0.1451 ± 0.027
Cross-validation details (10-fold Crossvalidation)
0.0345 ± 0.0025
Cross-validation details (10-fold Crossvalidation)
0.4821 ± 0.0009
Cross-validation details (10-fold Crossvalidation)
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
0.6021 ± 0.0101
Cross-validation details (10-fold Crossvalidation)
14980
Per class
Cross-validation details (10-fold Crossvalidation)
0.621 ± 0.0138
Per class
Cross-validation details (10-fold Crossvalidation)
0.6021 ± 0.0101
Cross-validation details (10-fold Crossvalidation)
0.9924 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.9745 ± 0.0017
Cross-validation details (10-fold Crossvalidation)
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4861 ± 0.001
Cross-validation details (10-fold Crossvalidation)
0.9774 ± 0.0019
Cross-validation details (10-fold Crossvalidation)
0.5682 ± 0.0131
Cross-validation details (10-fold Crossvalidation)