Run
10464251

Run 10464251

Task 9983 (Supervised Classification) eeg-eye-state Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBin sDiscretizer,step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.ensemble._forest.RandomForestClassifier(2)_bootstrapfalse
sklearn.ensemble._forest.RandomForestClassifier(2)_ccp_alpha0.5889594009230152
sklearn.ensemble._forest.RandomForestClassifier(2)_class_weightnull
sklearn.ensemble._forest.RandomForestClassifier(2)_criterion"gini"
sklearn.ensemble._forest.RandomForestClassifier(2)_max_depth22
sklearn.ensemble._forest.RandomForestClassifier(2)_max_features4
sklearn.ensemble._forest.RandomForestClassifier(2)_max_leaf_nodes13280
sklearn.ensemble._forest.RandomForestClassifier(2)_max_samples0.499635804892745
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_decrease0.5177248838710394
sklearn.ensemble._forest.RandomForestClassifier(2)_min_impurity_splitnull
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_leaf0.39536625250101737
sklearn.ensemble._forest.RandomForestClassifier(2)_min_samples_split0.07226380108116881
sklearn.ensemble._forest.RandomForestClassifier(2)_min_weight_fraction_leaf0.38113941040145455
sklearn.ensemble._forest.RandomForestClassifier(2)_n_estimators926
sklearn.ensemble._forest.RandomForestClassifier(2)_n_jobs1
sklearn.ensemble._forest.RandomForestClassifier(2)_oob_scorefalse
sklearn.ensemble._forest.RandomForestClassifier(2)_random_state42
sklearn.ensemble._forest.RandomForestClassifier(2)_verbose0
sklearn.ensemble._forest.RandomForestClassifier(2)_warm_startfalse
sklearn.preprocessing._discretization.KBinsDiscretizer(1)_encode"onehot"
sklearn.preprocessing._discretization.KBinsDiscretizer(1)_n_bins24
sklearn.preprocessing._discretization.KBinsDiscretizer(1)_strategy"uniform"
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBinsDiscretizer,step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBinsDiscretizer,step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.preprocessing._discretization.KBinsDiscretizer,step_1=sklearn.ensemble._forest.RandomForestClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

16 Evaluation measures

0.4997
Per class
Cross-validation details (10-fold Crossvalidation)
0 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5512 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
14980
Per class
Cross-validation details (10-fold Crossvalidation)
0.5512 ± 0.0003
Cross-validation details (10-fold Crossvalidation)
0.9924 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
1 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
1 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5
Cross-validation details (10-fold Crossvalidation)