Run
10464041

Run 10464041

Task 9983 (Supervised Classification) eeg-eye-state Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._pca.PCA,step_1=skle arn.linear_model._stochastic_gradient.SGDClassifier)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_alpha8.269296367220639
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_averagetrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_class_weightnull
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_early_stoppingtrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_epsilon28.013082411505927
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_eta00.14917535529849038
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_fit_intercepttrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_l1_ratio0.6493507424542471
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_learning_rate"adaptive"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_loss"squared_loss"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_max_iter453
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_iter_no_change33
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_n_jobs1
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_penalty"l2"
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_power_t0.21772621939560052
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_random_state42
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_shuffletrue
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_tol0.2373565386971333
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_validation_fraction0.18362043034395514
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_verbose0
sklearn.linear_model._stochastic_gradient.SGDClassifier(2)_warm_startfalse
sklearn.decomposition._pca.PCA(1)_copyfalse
sklearn.decomposition._pca.PCA(1)_iterated_power"auto"
sklearn.decomposition._pca.PCA(1)_n_components6
sklearn.decomposition._pca.PCA(1)_random_state42
sklearn.decomposition._pca.PCA(1)_svd_solver"auto"
sklearn.decomposition._pca.PCA(1)_tol2.8510085387060213
sklearn.decomposition._pca.PCA(1)_whitentrue
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._pca.PCA,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._pca.PCA,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._pca.PCA,step_1=sklearn.linear_model._stochastic_gradient.SGDClassifier)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.5007 ± 0.0011
Per class
Cross-validation details (10-fold Crossvalidation)
0.3935 ± 0.0015
Per class
Cross-validation details (10-fold Crossvalidation)
0.0015 ± 0.0025
Cross-validation details (10-fold Crossvalidation)
0.0898 ± 0.002
Cross-validation details (10-fold Crossvalidation)
0.4483 ± 0.001
Cross-validation details (10-fold Crossvalidation)
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5517 ± 0.001
Cross-validation details (10-fold Crossvalidation)
14980
Per class
Cross-validation details (10-fold Crossvalidation)
0.6281 ± 0.0474
Per class
Cross-validation details (10-fold Crossvalidation)
0.5517 ± 0.001
Cross-validation details (10-fold Crossvalidation)
0.9924 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.906 ± 0.002
Cross-validation details (10-fold Crossvalidation)
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
0.6695 ± 0.0008
Cross-validation details (10-fold Crossvalidation)
1.3461 ± 0.0015
Cross-validation details (10-fold Crossvalidation)
0.5007 ± 0.0011
Cross-validation details (10-fold Crossvalidation)