Run
10464033

Run 10464033

Task 9983 (Supervised Classification) eeg-eye-state Uploaded 21-05-2020 by Marc Zöller
0 likes downloaded by 0 people 0 issues 0 downvotes , 0 total downloads
  • automl_meta_features openml-python Sklearn_0.22.1.
Issue #Downvotes for this reason By


Flow

sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._fastica.FastICA,ste p_1=sklearn.naive_bayes.BernoulliNB)(1)Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The transformers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``.
sklearn.naive_bayes.BernoulliNB(11)_alpha131.5610634076478
sklearn.naive_bayes.BernoulliNB(11)_binarize0.0
sklearn.naive_bayes.BernoulliNB(11)_class_priornull
sklearn.naive_bayes.BernoulliNB(11)_fit_priortrue
sklearn.decomposition._fastica.FastICA(1)_algorithm"parallel"
sklearn.decomposition._fastica.FastICA(1)_fun"exp"
sklearn.decomposition._fastica.FastICA(1)_fun_argsnull
sklearn.decomposition._fastica.FastICA(1)_max_iter855
sklearn.decomposition._fastica.FastICA(1)_n_components7
sklearn.decomposition._fastica.FastICA(1)_random_state42
sklearn.decomposition._fastica.FastICA(1)_tol0.7028868744742722
sklearn.decomposition._fastica.FastICA(1)_w_initnull
sklearn.decomposition._fastica.FastICA(1)_whitentrue
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._fastica.FastICA,step_1=sklearn.naive_bayes.BernoulliNB)(1)_memorynull
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._fastica.FastICA,step_1=sklearn.naive_bayes.BernoulliNB)(1)_steps[{"oml-python:serialized_object": "component_reference", "value": {"key": "step_0", "step_name": "step_0"}}, {"oml-python:serialized_object": "component_reference", "value": {"key": "step_1", "step_name": "step_1"}}]
sklearn.pipeline.Pipeline(step_0=sklearn.decomposition._fastica.FastICA,step_1=sklearn.naive_bayes.BernoulliNB)(1)_verbosefalse

Result files

xml
Description

XML file describing the run, including user-defined evaluation measures.

arff
Predictions

ARFF file with instance-level predictions generated by the model.

18 Evaluation measures

0.6088 ± 0.0144
Per class
Cross-validation details (10-fold Crossvalidation)
0.5783 ± 0.0081
Per class
Cross-validation details (10-fold Crossvalidation)
0.1461 ± 0.0169
Cross-validation details (10-fold Crossvalidation)
0.0536 ± 0.0159
Cross-validation details (10-fold Crossvalidation)
0.4728 ± 0.0074
Cross-validation details (10-fold Crossvalidation)
0.4948 ± 0
Cross-validation details (10-fold Crossvalidation)
0.5796 ± 0.0103
Cross-validation details (10-fold Crossvalidation)
14980
Per class
Cross-validation details (10-fold Crossvalidation)
0.5777 ± 0.0092
Per class
Cross-validation details (10-fold Crossvalidation)
0.5796 ± 0.0103
Cross-validation details (10-fold Crossvalidation)
0.9924 ± 0.0001
Cross-validation details (10-fold Crossvalidation)
0.9556 ± 0.0149
Cross-validation details (10-fold Crossvalidation)
0.4974 ± 0
Cross-validation details (10-fold Crossvalidation)
0.4885 ± 0.0023
Cross-validation details (10-fold Crossvalidation)
0.9821 ± 0.0046
Cross-validation details (10-fold Crossvalidation)
0.5727 ± 0.0083
Cross-validation details (10-fold Crossvalidation)